Open Source Python Artificial Intelligence Software for Mac

Python Artificial Intelligence Software for Mac

View 1722 business solutions

Browse free open source Python Artificial Intelligence Software for Mac and projects below. Use the toggles on the left to filter open source Python Artificial Intelligence Software for Mac by OS, license, language, programming language, and project status.

  • Ship AI Apps Faster with Vertex AI Icon
    Ship AI Apps Faster with Vertex AI

    Go from idea to deployed AI app without managing infrastructure. Vertex AI offers one platform for the entire AI development lifecycle.

    Ship AI apps and features faster with Vertex AI—your end-to-end AI platform. Access Gemini 3 and 200+ foundation models, fine-tune for your needs, and deploy with enterprise-grade MLOps. Build chatbots, agents, or custom models. New customers get $300 in free credit.
    Try Vertex AI Free
  • Build on Google Cloud with $300 in Free Credit Icon
    Build on Google Cloud with $300 in Free Credit

    New to Google Cloud? Get $300 in free credit to explore Compute Engine, BigQuery, Cloud Run, Vertex AI, and 150+ other products.

    Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.
    Start Free Trial
  • 1
    Deep-Live-Cam

    Deep-Live-Cam

    Real time face swap and one-click video deepfake

    Real time face swap and one-click video deepfake with only a single image. Choose a face (image with the desired face) and the target image/video (image/video in which you want to replace the face) and click on Start. Open File Explorer and navigate to the directory you select your output to be in. You will find a directory named <video_title> where you can see the frames being swapped in real time. Once the processing is done, it will create the output file.
    Downloads: 563 This Week
    Last Update:
    See Project
  • 2
    Ultimate Vocal Remover (UVR5)

    Ultimate Vocal Remover (UVR5)

    GUI for a Vocal Remover that uses Deep Neural Networks

    This application uses state-of-the-art source separation models to remove vocals from audio files. UVR's core developers trained all of the models provided in this package (except for the Demucs v3 and v4 4-stem models).
    Downloads: 494 This Week
    Last Update:
    See Project
  • 3
    DeepFaceLive

    DeepFaceLive

    Real-time face swap for PC streaming or video calls

    You can swap your face from a webcam or the face in the video using trained face models. There is also a Face Animator module in DeepFaceLive app. You can control a static face picture using video or your own face from the camera. The quality is not the best, and requires fine face matching and tuning parameters for every face pair, but enough for funny videos and memes or real-time streaming at 25 fps using 35 TFLOPS GPU.
    Downloads: 489 This Week
    Last Update:
    See Project
  • 4
    InsightFace

    InsightFace

    State-of-the-art 2D and 3D Face Analysis Project

    State-of-the-art deep face analysis library. InsightFace is an open-source 2D&3D deep face analysis library. InsightFace is an integrated Python library for 2D&3D face analysis. InsightFace efficiently implements a wide variety of state-of-the-art algorithms for face recognition, face detection, and face alignment, which are optimized for both training and deployment. Research institutes and industrial organizations can get benefits from InsightFace library.
    Downloads: 347 This Week
    Last Update:
    See Project
  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • 5
    OpenCV

    OpenCV

    Open Source Computer Vision Library

    The Open Source Computer Vision Library has >2500 algorithms, extensive documentation and sample code for real-time computer vision. It works on Windows, Linux, Mac OS X, Android, iOS in your browser through JavaScript. Languages: C++, Python, Julia, Javascript Homepage: https://opencv.org Q&A forum: https://forum.opencv.org/ Documentation: https://docs.opencv.org Source code: https://github.com/opencv Please pay special attention to our tutorials! https://docs.opencv.org/master Books about the OpenCV are described here: https://opencv.org/books.html
    Leader badge
    Downloads: 1,474 This Week
    Last Update:
    See Project
  • 6
    Jarvis

    Jarvis

    Personal Assistant for Linux and macOS

    Jarvis is a simple personal assistant for Linux, MacOS and Windows which works on the command line. He can talk to you if you enable his voice. He can tell you the weather, he can find restaurants and other places near you. He can do some great stuff for you. In order to start Jarvis just clone this repository and run python installer. Run Jarvis from anywhere by command jarvis. You can start by typing help within the Jarvis command line to check what Jarvis can do for you. Plugins may be modified using the decorators @alias, @require and @complete. These special decorators may be used in any order or several times.Not all plugins are compatible with every system. To specify compatibility constraints, use the require-feature.
    Downloads: 232 This Week
    Last Update:
    See Project
  • 7
    Fooocus

    Fooocus

    Focus on prompting and generating

    Fooocus is an open-source image generation software that simplifies the process of creating images from text prompts. Built on Gradio and leveraging Stable Diffusion XL, Fooocus eliminates the need for manual parameter tweaking, allowing users to focus solely on crafting prompts. It offers a user-friendly interface with minimal setup, making advanced image synthesis accessible to a broader audience.
    Downloads: 195 This Week
    Last Update:
    See Project
  • 8
    AUTOMATIC1111 Stable Diffusion web UI
    AUTOMATIC1111's stable-diffusion-webui is a powerful, user-friendly web interface built on the Gradio library that allows users to easily interact with Stable Diffusion models for AI-powered image generation. Supporting both text-to-image (txt2img) and image-to-image (img2img) generation, this open-source UI offers a rich feature set including inpainting, outpainting, attention control, and multiple advanced upscaling options. With a flexible installation process across Windows, Linux, and Apple Silicon, plus support for GPUs and CPUs, it caters to a wide range of users—from hobbyists to professionals. The interface also supports prompt editing, batch processing, custom scripts, and many community extensions, making it a highly customizable and continually evolving platform for creative AI art generation.
    Downloads: 188 This Week
    Last Update:
    See Project
  • 9
    GPT4All

    GPT4All

    Run Local LLMs on Any Device. Open-source

    GPT4All is an open-source project that allows users to run large language models (LLMs) locally on their desktops or laptops, eliminating the need for API calls or GPUs. The software provides a simple, user-friendly application that can be downloaded and run on various platforms, including Windows, macOS, and Ubuntu, without requiring specialized hardware. It integrates with the llama.cpp implementation and supports multiple LLMs, allowing users to interact with AI models privately. This project also supports Python integrations for easy automation and customization. GPT4All is ideal for individuals and businesses seeking private, offline access to powerful LLMs.
    Downloads: 169 This Week
    Last Update:
    See Project
  • Run Any Workload on Compute Engine VMs Icon
    Run Any Workload on Compute Engine VMs

    From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.

    Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
    Try Compute Engine
  • 10
    Wan2.2

    Wan2.2

    Wan2.2: Open and Advanced Large-Scale Video Generative Model

    Wan2.2 is a major upgrade to the Wan series of open and advanced large-scale video generative models, incorporating cutting-edge innovations to boost video generation quality and efficiency. It introduces a Mixture-of-Experts (MoE) architecture that splits the denoising process across specialized expert models, increasing total model capacity without raising computational costs. Wan2.2 integrates meticulously curated cinematic aesthetic data, enabling precise control over lighting, composition, color tone, and more, for high-quality, customizable video styles. The model is trained on significantly larger datasets than its predecessor, greatly enhancing motion complexity, semantic understanding, and aesthetic diversity. Wan2.2 also open-sources a 5-billion parameter high-compression VAE-based hybrid text-image-to-video (TI2V) model that supports 720P video generation at 24fps on consumer-grade GPUs like the RTX 4090. It supports multiple video generation tasks including text-to-video.
    Downloads: 158 This Week
    Last Update:
    See Project
  • 11
    ComfyUI

    ComfyUI

    The most powerful and modular diffusion model GUI, api and backend

    The most powerful and modular diffusion model is GUI and backend. This UI will let you design and execute advanced stable diffusion pipelines using a graph/nodes/flowchart-based interface. We are a team dedicated to iterating and improving ComfyUI, supporting the ComfyUI ecosystem with tools like node manager, node registry, cli, automated testing, and public documentation. Open source AI models will win in the long run against closed models and we are only at the beginning. Our core mission is to advance and democratize AI tooling. We believe that the future of AI tooling is open-source and community-driven.
    Downloads: 153 This Week
    Last Update:
    See Project
  • 12
    ACE-Step 1.5

    ACE-Step 1.5

    The most powerful local music generation model

    ACE-Step 1.5 is an advanced open-source foundation model for AI-driven music generation that pushes beyond traditional limitations in speed, musical coherence, and controllability by innovating in architecture and training design. It integrates cutting-edge generative techniques—such as diffusion-based synthesis combined with compressed autoencoders and lightweight transformer elements—to produce high-quality full-length music tracks with rapid inference times, capable of generating a complete song in seconds on modern GPUs while remaining efficient enough to run on consumer-grade hardware with minimal memory requirements. Beyond straightforward text-to-music synthesis, ACE-Step 1.5 enables flexible creative workflows, including tasks like cover generation, editing existing tracks, transforming vocals to background accompaniment, and stylistic personalization using low-rank adaptation from just a few example songs.
    Downloads: 137 This Week
    Last Update:
    See Project
  • 13
    Roop

    Roop

    One-click face swap

    Take a video and replace the face with a face of your choice. You only need one image of the desired face. No dataset, and no training.
    Downloads: 104 This Week
    Last Update:
    See Project
  • 14
    GLM-4.6

    GLM-4.6

    Agentic, Reasoning, and Coding (ARC) foundation models

    GLM-4.6 is the latest iteration of Zhipu AI’s foundation model, delivering significant advancements over GLM-4.5. It introduces an extended 200K token context window, enabling more sophisticated long-context reasoning and agentic workflows. The model achieves superior coding performance, excelling in benchmarks and practical coding assistants such as Claude Code, Cline, Roo Code, and Kilo Code. Its reasoning capabilities have been strengthened, including improved tool usage during inference and more effective integration within agent frameworks. GLM-4.6 also enhances writing quality, producing outputs that better align with human preferences and role-playing scenarios. Benchmark evaluations demonstrate that it not only outperforms GLM-4.5 but also rivals leading global models such as DeepSeek-V3.1-Terminus and Claude Sonnet 4.
    Downloads: 102 This Week
    Last Update:
    See Project
  • 15
    GLM-4.7

    GLM-4.7

    Advanced language and coding AI model

    GLM-4.7 is an advanced agent-oriented large language model designed as a high-performance coding and reasoning partner. It delivers significant gains over GLM-4.6 in multilingual agentic coding, terminal-based workflows, and real-world developer benchmarks such as SWE-bench and Terminal Bench 2.0. The model introduces stronger “thinking before acting” behavior, improving stability and accuracy in complex agent frameworks like Claude Code, Cline, and Roo Code. GLM-4.7 also advances “vibe coding,” producing cleaner, more modern UIs, better-structured webpages, and visually improved slide layouts. Its tool-use capabilities are substantially enhanced, with notable improvements in browsing, search, and tool-integrated reasoning tasks. Overall, GLM-4.7 shows broad performance upgrades across coding, reasoning, chat, creative writing, and role-play scenarios.
    Downloads: 97 This Week
    Last Update:
    See Project
  • 16
    OCRmyPDF

    OCRmyPDF

    OCRmyPDF adds an OCR text layer to scanned PDF files

    OCRmyPDF adds an optical character recognition (OCR) text layer to scanned PDF files, allowing them to be searched. PDF is the best format for storing and exchanging scanned documents. Unfortunately, PDFs can be difficult to modify. OCRmyPDF makes it easy to apply image processing and OCR (recognized, searchable text) to existing PDFs.
    Downloads: 97 This Week
    Last Update:
    See Project
  • 17
    Qwen3

    Qwen3

    Qwen3 is the large language model series developed by Qwen team

    Qwen3 is a cutting-edge large language model (LLM) series developed by the Qwen team at Alibaba Cloud. The latest updated version, Qwen3-235B-A22B-Instruct-2507, features significant improvements in instruction-following, reasoning, knowledge coverage, and long-context understanding up to 256K tokens. It delivers higher quality and more helpful text generation across multiple languages and domains, including mathematics, coding, science, and tool usage. Various quantized versions, tools/pipelines provided for inference using quantized formats (e.g. GGUF, etc.). Coverage for many languages in training and usage, alignment with human preferences in open-ended tasks, etc.
    Downloads: 97 This Week
    Last Update:
    See Project
  • 18
    LabelImg

    LabelImg

    Graphical image annotation tool and label object bounding boxes

    LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML files in PASCAL VOC format, the format used by ImageNet. Besides, it also supports YOLO and CreateML formats. Linux/Ubuntu/Mac requires at least Python 2.6 and has been tested with PyQt 4.8. However, Python 3 or above and PyQt5 are strongly recommended. Virtualenv can avoid a lot of the QT / Python version issues. Build and launch using the instructions. Click 'Change default saved annotation folder' in Menu/File. Click 'Open Dir'. Click 'Create RectBox'. Click and release left mouse to select a region to annotate the rect box. You can use right mouse to drag the rect box to copy or move it. The annotation will be saved to the folder you specify. You can refer to the hotkeys to speed up your workflow.
    Downloads: 95 This Week
    Last Update:
    See Project
  • 19
    SAM 3

    SAM 3

    Code for running inference and finetuning with SAM 3 model

    SAM 3 (Segment Anything Model 3) is a unified foundation model for promptable segmentation in both images and videos, capable of detecting, segmenting, and tracking objects. It accepts both text prompts (open-vocabulary concepts like “red car” or “goalkeeper in white”) and visual prompts (points, boxes, masks) and returns high-quality masks, boxes, and scores for the requested concepts. Compared with SAM 2, SAM 3 introduces the ability to exhaustively segment all instances of an open-vocabulary concept specified by a short phrase or exemplars, scaling to a vastly larger set of categories than traditional closed-set models. This capability is grounded in a new data engine that automatically annotated over four million unique concepts, producing a massive open-vocabulary segmentation dataset and enabling the model to achieve 75–80% of human performance on the SA-CO benchmark, which itself spans 270K unique concepts.
    Downloads: 86 This Week
    Last Update:
    See Project
  • 20
    DeepSeek R1

    DeepSeek R1

    Open-source, high-performance AI model with advanced reasoning

    DeepSeek-R1 is an open-source large language model developed by DeepSeek, designed to excel in complex reasoning tasks across domains such as mathematics, coding, and language. DeepSeek R1 offers unrestricted access for both commercial and academic use. The model employs a Mixture of Experts (MoE) architecture, comprising 671 billion total parameters with 37 billion active parameters per token, and supports a context length of up to 128,000 tokens. DeepSeek-R1's training regimen uniquely integrates large-scale reinforcement learning (RL) without relying on supervised fine-tuning, enabling the model to develop advanced reasoning capabilities. This approach has resulted in performance comparable to leading models like OpenAI's o1, while maintaining cost-efficiency. To further support the research community, DeepSeek has released distilled versions of the model based on architectures such as LLaMA and Qwen.
    Downloads: 78 This Week
    Last Update:
    See Project
  • 21
    GLM-4.5

    GLM-4.5

    GLM-4.5: Open-source LLM for intelligent agents by Z.ai

    GLM-4.5 is a cutting-edge open-source large language model designed by Z.ai for intelligent agent applications. The flagship GLM-4.5 model has 355 billion total parameters with 32 billion active parameters, while the compact GLM-4.5-Air version offers 106 billion total parameters and 12 billion active parameters. Both models unify reasoning, coding, and intelligent agent capabilities, providing two modes: a thinking mode for complex reasoning and tool usage, and a non-thinking mode for immediate responses. They are released under the MIT license, allowing commercial use and secondary development. GLM-4.5 achieves strong performance on 12 industry-standard benchmarks, ranking 3rd overall, while GLM-4.5-Air balances competitive results with greater efficiency. The models support FP8 and BF16 precision, and can handle very large context windows of up to 128K tokens. Flexible inference is supported through frameworks like vLLM and SGLang with tool-call and reasoning parsers included.
    Downloads: 72 This Week
    Last Update:
    See Project
  • 22
    Whisper

    Whisper

    Robust Speech Recognition via Large-Scale Weak Supervision

    OpenAI Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multitasking model that can perform multilingual speech recognition, speech translation, and language identification. A Transformer sequence-to-sequence model is trained on various speech processing tasks, including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection. These tasks are jointly represented as a sequence of tokens to be predicted by the decoder, allowing a single model to replace many stages of a traditional speech-processing pipeline. The multitask training format uses a set of special tokens that serve as task specifiers or classification targets.
    Downloads: 71 This Week
    Last Update:
    See Project
  • 23
    DiffSinger

    DiffSinger

    Singing Voice Synthesis via Shallow Diffusion Mechanism

    DiffSinger is an open-source PyTorch implementation of a diffusion-based acoustic model for singing-voice synthesis (SVS) and also text-to-speech (TTS) in a related variant. The core idea is to view generation of a sung voice (mel-spectrogram) as a diffusion process: starting from noise, the model iteratively “denoises” while being conditioned on a music score (lyrics, pitch, musical timing). This avoids some of the typical problems of prior SVS models — like over-smoothing or unstable GAN training — and produces more realistic, expressive, and natural-sounding singing. The method introduces a “shallow diffusion” mechanism: instead of diffusing over many steps, generation begins at a shallow step determined adaptively, which leverages prior knowledge learned by a simple mel-spectrogram decoder and speeds up inference.
    Downloads: 68 This Week
    Last Update:
    See Project
  • 24
    Demucs

    Demucs

    Code for the paper Hybrid Spectrogram and Waveform Source Separation

    Demucs (Deep Extractor for Music Sources) is a deep-learning framework for music source separation—extracting individual instrument or vocal tracks from a mixed audio file. The system is based on a U-Net-like convolutional architecture combined with recurrent and transformer elements to capture both short-term and long-term temporal structure. It processes raw waveforms directly rather than spectrograms, allowing for higher-quality reconstruction and fewer artifacts in separated tracks. The repository includes pretrained models for common tasks such as isolating vocals, drums, bass, and accompaniment from stereo music, achieving state-of-the-art results in benchmarks like MUSDB18. Demucs supports GPU-accelerated inference and can process multi-channel audio with chunked streaming for real-time or batch operation. It also provides training scripts and utilities to fine-tune on custom datasets, along with remixing and enhancement tools.
    Downloads: 61 This Week
    Last Update:
    See Project
  • 25
    Applio

    Applio

    A simple, high-quality voice conversion tool focused on ease of use

    Applio is a high-quality voice conversion toolkit designed to make modern RVC/VITS-based voice cloning accessible to non-experts. It focuses strongly on ease of use: installation scripts for Windows, Linux, and macOS set up dependencies and then launch a browser-based Gradio interface. Within that interface, users can train and run voice conversion models for tasks like singing conversion, speech-to-speech transformation, and voice cloning. The project is structured to be flexible through plugins and configurations so users can extend functionality without touching the core code. Applio is considered stable and mature; ongoing development is now centered on security patches, dependency maintenance, and occasional improvements, which makes it attractive for production or repeatable workflows. It also includes TensorBoard helper scripts so people training custom models can monitor metrics and experiment more systematically.
    Downloads: 57 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →