Python Generative AI for Mac

View 1722 business solutions

Browse free open source Python Generative AI for Mac and projects below. Use the toggles on the left to filter open source Python Generative AI for Mac by OS, license, language, programming language, and project status.

  • Build on Google Cloud with $300 in Free Credit Icon
    Build on Google Cloud with $300 in Free Credit

    New to Google Cloud? Get $300 in free credit to explore Compute Engine, BigQuery, Cloud Run, Vertex AI, and 150+ other products.

    Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.
    Start Free Trial
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • 1
    SentenceTransformers

    SentenceTransformers

    Multilingual sentence & image embeddings with BERT

    SentenceTransformers is a Python framework for state-of-the-art sentence, text and image embeddings. The initial work is described in our paper Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. You can use this framework to compute sentence / text embeddings for more than 100 languages. These embeddings can then be compared e.g. with cosine-similarity to find sentences with a similar meaning. This can be useful for semantic textual similar, semantic search, or paraphrase mining. The framework is based on PyTorch and Transformers and offers a large collection of pre-trained models tuned for various tasks. Further, it is easy to fine-tune your own models. Our models are evaluated extensively and achieve state-of-the-art performance on various tasks. Further, the code is tuned to provide the highest possible speed.
    Downloads: 21 This Week
    Last Update:
    See Project
  • 2
    Orion

    Orion

    A machine learning library for detecting anomalies in signals

    Orion is a machine-learning library built for unsupervised time series anomaly detection. Such signals are generated by a wide variety of systems, few examples include telemetry data generated by satellites, signals from wind turbines, and even stock market price tickers. We built this to provide one place where users can find the latest and greatest in machine learning and deep learning world including our own innovations. Abstract away from the users the nitty-gritty about preprocessing, finding the best pipeline, and postprocessing. We want to provide a systematic way to evaluate the latest and greatest machine learning methods via our benchmarking effort. Build time series anomaly detection platforms custom to their workflows through our backend database and rest API. A way for machine learning researchers to contribute in a scaffolded way so their innovations are immediately available to the end users.
    Downloads: 19 This Week
    Last Update:
    See Project
  • 3
    GIMP ML

    GIMP ML

    AI for GNU Image Manipulation Program

    This repository introduces GIMP3-ML, a set of Python plugins for the widely popular GNU Image Manipulation Program (GIMP). It enables the use of recent advances in computer vision to the conventional image editing pipeline. Applications from deep learning such as monocular depth estimation, semantic segmentation, mask generative adversarial networks, image super-resolution, de-noising and coloring have been incorporated with GIMP through Python-based plugins. Additionally, operations on images such as edge detection and color clustering have also been added. GIMP-ML relies on standard Python packages such as numpy, scikit-image, pillow, pytorch, open-cv, scipy. In addition, GIMP-ML also aims to bring the benefits of using deep learning networks used for computer vision tasks to routine image processing workflows.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 4
    KoboldCpp

    KoboldCpp

    Run GGUF models easily with a UI or API. One File. Zero Install.

    KoboldCpp is an easy-to-use AI text-generation software for GGML and GGUF models, inspired by the original KoboldAI. It's a single self-contained distributable that builds off llama.cpp and adds many additional powerful features.
    Downloads: 326 This Week
    Last Update:
    See Project
  • Cut Cloud Costs with Google Compute Engine Icon
    Cut Cloud Costs with Google Compute Engine

    Save up to 91% with Spot VMs and get automatic sustained-use discounts. One free VM per month, plus $300 in credits.

    Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
    Try Compute Engine
  • 5
    InvokeAI

    InvokeAI

    InvokeAI is a leading creative engine for Stable Diffusion models

    InvokeAI is an implementation of Stable Diffusion, the open source text-to-image and image-to-image generator. It provides a streamlined process with various new features and options to aid the image generation process. It runs on Windows, Mac and Linux machines, and runs on GPU cards with as little as 4 GB or RAM. InvokeAI is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. InvokeAI offers an industry leading Web Interface, interactive Command Line Interface, and also serves as the foundation for multiple commercial products. This fork is supported across Linux, Windows and Macintosh. Linux users can use either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm driver). We do not recommend the GTX 1650 or 1660 series video cards. They are unable to run in half-precision mode and do not have sufficient VRAM to render 512x512 images.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 6
    LangChain

    LangChain

    ⚡ Building applications with LLMs through composability ⚡

    Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. But using these LLMs in isolation is often not enough to create a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge. This library is aimed at assisting in the development of those types of applications.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 7
    Dream Textures

    Dream Textures

    Stable Diffusion built-in to Blender

    Create textures, concept art, background assets, and more with a simple text prompt. Use the 'Seamless' option to create textures that tile perfectly with no visible seam. Texture entire scenes with 'Project Dream Texture' and depth to image. Re-style animations with the Cycles render pass. Run the models on your machine to iterate without slowdowns from a service. Create textures, concept art, and more with text prompts. Learn how to use the various configuration options to get exactly what you're looking for. Texture entire models and scenes with depth to image. Inpaint to fix up images and convert existing textures into seamless ones automatically. Outpaint to increase the size of an image by extending it in any direction. Perform style transfer and create novel animations with Stable Diffusion as a post processing step. Dream Textures has been tested with CUDA and Apple Silicon GPUs. Over 4GB of VRAM is recommended.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 8
    Generative AI

    Generative AI

    Sample code and notebooks for Generative AI on Google Cloud

    Generative AI is a comprehensive collection of code samples, notebooks, and demo applications designed to help developers build generative-AI workflows on the Vertex AI platform. It spans multiple modalities—text, image, audio, search (RAG/grounding) and more—showing how to integrate foundation models like the Gemini family into cloud projects. The README emphasises getting started with prompts, datasets, environments and sample apps, making it ideal for both experimentation and production-ready usage. The repository architecture is organised into folders like gemini/, search/, vision/, audio/, and rag-grounding/, which helps developers locate use cases by modality. It is licensed under Apache-2.0, open­sourced and maintained by Google, meaning it's designed with enterprise-grade practices in mind. Overall, it serves as a practical entry point and reference library for building real-world generative AI systems on Google Cloud.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 9
    Image Super-Resolution (ISR)

    Image Super-Resolution (ISR)

    Super-scale your images and run experiments with Residual Dense

    The goal of this project is to upscale and improve the quality of low-resolution images. This project contains Keras implementations of different Residual Dense Networks for Single Image Super-Resolution (ISR) as well as scripts to train these networks using content and adversarial loss components. Docker scripts and Google Colab notebooks are available to carry training and prediction. Also, we provide scripts to facilitate training on the cloud with AWS and Nvidia-docker with only a few commands. When training your own model, start with only PSNR loss (50+ epochs, depending on the dataset) and only then introduce GANS and feature loss. This can be controlled by the loss weights argument. The weights used to produce these images are available directly when creating the model object. ISR is compatible with Python 3.6 and is distributed under the Apache 2.0 license.
    Downloads: 7 This Week
    Last Update:
    See Project
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 10
    AnimeGAN

    AnimeGAN

    A simple PyTorch Implementation of Generative Adversarial Networks

    A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. The images are generated from a DCGAN model trained on 143,000 anime character faces for 100 epochs. Manipulating latent codes enables the transition from images in the first row to the last row. The images are not clean, some outliers can be observed, which degrades the quality of the generated images. Anime-style images of 126 tags are collected from danbooru.donmai.us using the crawler tool gallery-dl. The images are then processed by an anime face detector python-anime face. The resulting dataset contains ~143,000 anime faces. Note that some of the tags may no longer be meaningful after cropping, i.e. the cropped face images under the 'uniform' tag may not contain visible parts of uniforms.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 11
    CTGAN

    CTGAN

    Conditional GAN for generating synthetic tabular data

    CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn from real data and generate synthetic data with high fidelity. If you're just getting started with synthetic data, we recommend installing the SDV library which provides user-friendly APIs for accessing CTGAN. The SDV library provides wrappers for preprocessing your data as well as additional usability features like constraints. When using the CTGAN library directly, you may need to manually preprocess your data into the correct format, for example, continuous data must be represented as floats. Discrete data must be represented as ints or strings. The data should not contain any missing values.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 12
    AudioLM - Pytorch

    AudioLM - Pytorch

    Implementation of AudioLM audio generation model in Pytorch

    Implementation of AudioLM, a Language Modeling Approach to Audio Generation out of Google Research, in Pytorch It also extends the work for conditioning with classifier free guidance with T5. This allows for one to do text-to-audio or TTS, not offered in the paper. Yes, this means VALL-E can be trained from this repository. It is essentially the same. This repository now also contains a MIT licensed version of SoundStream. It is also compatible with EnCodec, however, be aware that it has a more restrictive non-commercial license, if you choose to use it.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 13
    DALL-E 2 - Pytorch

    DALL-E 2 - Pytorch

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis neural network, in Pytorch. The main novelty seems to be an extra layer of indirection with the prior network (whether it is an autoregressive transformer or a diffusion network), which predicts an image embedding based on the text embedding from CLIP. Specifically, this repository will only build out the diffusion prior network, as it is the best performing variant (but which incidentally involves a causal transformer as the denoising network) To train DALLE-2 is a 3 step process, with the training of CLIP being the most important. To train CLIP, you can either use x-clip package, or join the LAION discord, where a lot of replication efforts are already underway. Then, you will need to train the decoder, which learns to generate images based on the image embedding coming from the trained CLIP.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    GPT Neo

    GPT Neo

    An implementation of model parallel GPT-2 and GPT-3-style models

    An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here to play with our pre-trained models, we strongly recommend you try out the HuggingFace Transformer integration. Training and inference is officially supported on TPU and should work on GPU as well. This repository will be (mostly) archived as we move focus to our GPU-specific repo, GPT-NeoX. NB, while neo can technically run a training step at 200B+ parameters, it is very inefficient at those scales. This, as well as the fact that many GPUs became available to us, among other things, prompted us to move development over to GPT-NeoX. All evaluations were done using our evaluation harness. Some results for GPT-2 and GPT-3 are inconsistent with the values reported in the respective papers. We are currently looking into why, and would greatly appreciate feedback and further testing of our eval harness.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    Shap-E

    Shap-E

    Generate 3D objects conditioned on text or images

    The shap-e repository provides the official code and model release for Shap-E, a conditional generative model designed to produce 3D assets (implicit functions, meshes, neural radiance fields) from text or image prompts. The model is built with a two-stage architecture: first an encoder that maps existing 3D assets into parameterizations of implicit functions, and then a conditional diffusion model trained on those parameterizations to generate new assets. Because it works at the level of implicit functions, Shap-E can render output both as textured meshes and NeRF-style volumetric renderings. The repository contains sample notebooks (e.g. sample_text_to_3d.ipynb, sample_image_to_3d.ipynb) so users can try out text → 3D or image → 3D generation. The code is distributed under the MIT license, and includes a “model card” that documents limitations, recommended use, and ethical considerations.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    Text2Video

    Text2Video

    Software tool that converts text to video for more engaging experience

    Text2Video is a software tool that converts text to video for more engaging learning experience. I started this project because during this semester, I have been given many reading assignments and I felt frustration in reading long text. For me, it was very time and energy-consuming to learn something through reading. So I imagined, "What if there was a tool that turns text into something more engaging such as a video, wouldn't it improve my learning experience?" I created a prototype web application that takes text as an input and generates a video as an output. I plan to further work on the project targeting young college students who are aged between 18 to 23 because they tend to prefer learning through videos over books based on the survey I found. The technologies I used for the project are HTML, CSS, Javascript, Node.js, CCapture.js, ffmpegserver.js, Amazon Polly, Python, Flask, gevent, spaCy, and Pixabay API.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    Video Diffusion - Pytorch

    Video Diffusion - Pytorch

    Implementation of Video Diffusion Models

    Implementation of Video Diffusion Models, Jonathan Ho's new paper extending DDPMs to Video Generation - in Pytorch. Implementation of Video Diffusion Models, Jonathan Ho's new paper extending DDPMs to Video Generation - in Pytorch. It uses a special space-time factored U-net, extending generation from 2D images to 3D videos. 14k for difficult moving mnist (converging much faster and better than NUWA) - wip. Any new developments for text-to-video synthesis will be centralized at Imagen-pytorch. For conditioning on text, they derived text embeddings by first passing the tokenized text through BERT-large. You can also directly pass in the descriptions of the video as strings, if you plan on using BERT-base for text conditioning. This repository also contains a handy Trainer class for training on a folder of gifs. Each gif must be of the correct dimensions image_size and num_frames.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 18
    revChatGPT

    revChatGPT

    Reverse engineered ChatGPT API

    Reverse Engineered ChatGPT API by OpenAI. Extensible for chatbots etc. This is not an official OpenAI product.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    Deep Lake

    Deep Lake

    Data Lake for Deep Learning. Build, manage, and query datasets

    Deep Lake (formerly known as Activeloop Hub) is a data lake for deep learning applications. Our open-source dataset format is optimized for rapid streaming and querying of data while training models at scale, and it includes a simple API for creating, storing, and collaborating on AI datasets of any size. It can be deployed locally or in the cloud, and it enables you to store all of your data in one place, ranging from simple annotations to large videos. Deep Lake is used by Google, Waymo, Red Cross, Omdena, Yale, & Oxford. Use one API to upload, download, and stream datasets to/from AWS S3/S3-compatible storage, GCP, Activeloop cloud, or local storage. Store images, audios and videos in their native compression. Deeplake automatically decompresses them to raw data only when needed, e.g., when training a model. Treat your cloud datasets as if they are a collection of NumPy arrays in your system's memory. Slice them, index them, or iterate through them.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    Finetune Transformer LM

    Finetune Transformer LM

    Code for "Improving Language Understanding by Generative Pre-Training"

    finetune-transformer-lm is a research codebase that accompanies the paper “Improving Language Understanding by Generative Pre-Training,” providing a minimal implementation focused on fine-tuning a transformer language model for evaluation tasks. The repository centers on reproducing the ROCStories Cloze Test result and includes a single-command training workflow to run the experiment end to end. It documents that runs are non-deterministic due to certain GPU operations and reports a median accuracy over multiple trials that is slightly below the single-run result in the paper, reflecting expected variance in practice. The project ships lightweight training, data, and analysis scripts, keeping the footprint small while making the experimental pipeline transparent. It is provided as archived, research-grade code intended for replication and study rather than continuous development.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    Make-A-Video - Pytorch (wip)

    Make-A-Video - Pytorch (wip)

    Implementation of Make-A-Video, new SOTA text to video generator

    Implementation of Make-A-Video, new SOTA text to video generator from Meta AI, in Pytorch. They combine pseudo-3d convolutions (axial convolutions) and temporal attention and show much better temporal fusion. The pseudo-3d convolutions isn't a new concept. It has been explored before in other contexts, say for protein contact prediction as "dimensional hybrid residual networks". The gist of the paper comes down to, take a SOTA text-to-image model (here they use DALL-E2, but the same learning points would easily apply to Imagen), make a few minor modifications for attention across time and other ways to skimp on the compute cost, do frame interpolation correctly, get a great video model out. Passing in images (if one were to pretrain on images first), both temporal convolution and attention will be automatically skipped. In other words, you can use this straightforwardly in your 2d Unet and then port it over to a 3d Unet once that phase of the training is done.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    MusicLM - Pytorch

    MusicLM - Pytorch

    Implementation of MusicLM music generation model in Pytorch

    Implementation of MusicLM, Google's new SOTA model for music generation using attention networks, in Pytorch. They are basically using text-conditioned AudioLM, but surprisingly with the embeddings from a text-audio contrastive learned model named MuLan. MuLan is what will be built out in this repository, with AudioLM modified from the other repository to support the music generation needs here.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    Phenaki - Pytorch

    Phenaki - Pytorch

    Implementation of Phenaki Video, which uses Mask GIT

    Implementation of Phenaki Video, which uses Mask GIT to produce text-guided videos of up to 2 minutes in length, in Pytorch. It will also combine another technique involving a token critic for potentially even better generations. A new paper suggests that instead of relying on the predicted probabilities of each token as a measure of confidence, one can train an extra critic to decide what to iteratively mask during sampling. This repository will also endeavor to allow the researcher to train on text-to-image and then text-to-video. Similarly, for unconditional training, the researcher should be able to first train on images and then fine tune on video.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    langchain-prefect

    langchain-prefect

    Tools for using Langchain with Prefect

    Large Language Models (LLMs) are interesting and useful  -  building apps that use them responsibly feels like a no-brainer. Tools like Langchain make it easier to build apps using LLMs. We need to know details about how our apps work, even when we want to use tools with convenient abstractions that may obfuscate those details. Prefect is built to help data people build, run, and observe event-driven workflows wherever they want. It provides a framework for creating deployments on a whole slew of runtime environments (from Lambda to Kubernetes), and is cloud agnostic (best supports AWS, GCP, Azure). For this reason, it could be a great fit for observing apps that use LLMs. RecordLLMCalls is a ContextDecorator that can be used to track LLM calls made by Langchain LLMs as Prefect flows. Run several LLM calls via langchain agent as Prefect subflows.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. Albumentations supports different computer vision tasks such as classification, semantic segmentation, instance segmentation, object detection, and pose estimation. Albumentations works well with data from different domains: photos, medical images, satellite imagery, manufacturing and industrial applications, Generative Adversarial Networks. Albumentations can work with various deep learning frameworks such as PyTorch and Keras.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →