Open Source Julia Software for ChromeOS

Julia Software for ChromeOS

Browse free open source Julia Software for ChromeOS and projects below. Use the toggles on the left to filter open source Julia Software for ChromeOS by OS, license, language, programming language, and project status.

  • Easily Host LLMs and Web Apps on Cloud Run Icon
    Easily Host LLMs and Web Apps on Cloud Run

    Run everything from popular models with on-demand NVIDIA L4 GPUs to web apps without infrastructure management.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure. Cloud Run gives you on-demand GPU access for hosting LLMs and running real-time AI—with 5-second cold starts and automatic scale-to-zero so you only pay for actual usage. New customers get $300 in free credit to start.
    Try Cloud Run Free
  • Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud Icon
    Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud

    Get back to your application and leave the database to us. Cloud SQL automatically handles backups, replication, and scaling.

    Cloud SQL is a fully managed relational database for MySQL, PostgreSQL, and SQL Server. We handle patching, backups, replication, encryption, and failover—so you can focus on your app. Migrate from on-prem or other clouds with free Database Migration Service. IDC found customers achieved 246% ROI. New customers get $300 in credits plus a 30-day free trial.
    Try Cloud SQL Free
  • 1
    Combinatorics.jl

    Combinatorics.jl

    A combinatorics library for Julia

    A combinatorics library for Julia, focusing mostly (as of now) on enumerative combinatorics and permutations. As overflows are expected even for low values, most of the functions always return BigInt, and are marked as such.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 2
    Images.jl

    Images.jl

    An image library for Julia

    JuliaImages (source code) hosts the major Julia packages for image processing. Julia is well-suited to image processing because it is a modern and elegant high-level language that is a pleasure to use, while also allowing you to write "inner loops" that compile to efficient machine code (i.e., it is as fast as C). Julia supports multithreading and, through add-on packages, GPU processing. JuliaImages is a collection of packages specifically focused on image processing. It is not yet as complete as some toolkits for other programming languages, but it has many useful algorithms. It is focused on clean architecture and is designed to unify "machine vision" and "biomedical 3d image processing" communities.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 3
    InvertibleNetworks.jl

    InvertibleNetworks.jl

    A Julia framework for invertible neural networks

    Building blocks for invertible neural networks in the Julia programming language.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 4
    JuliaFEM.jl

    JuliaFEM.jl

    The JuliaFEM software library is a framework

    The JuliaFEM software library is a framework that allows for the distributed processing of large Finite Element Models across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. The JuliaFEM software library is a framework that allows for the distributed processing of large Finite Element Models across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. The basic design principle is: that everything is nonlinear. All physics models are nonlinear from which the linearization are made as special cases.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    ModelingToolkitStandardLibrary.jl

    ModelingToolkitStandardLibrary.jl

    A standard library of components to model the world and beyond

    The ModelingToolkit Standard Library is a standard library of components to model the world and beyond.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    Agents.jl

    Agents.jl

    Agent-based modeling framework in Julia

    Agents.jl is a pure Julia framework for agent-based modeling (ABM): a computational simulation methodology where autonomous agents react to their environment (including other agents) given a predefined set of rules. The simplicity of Agents.jl is due to the intuitive space-agnostic modeling approach we have implemented: agent actions are specified using generically named functions (such as "move agent" or "find nearby agents") that do not depend on the actual space the agents exist in, nor on the properties of the agents themselves. Overall this leads to ultra-fast model prototyping where even changing the space the agents live in is a matter of only a couple of lines of code.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    Clapeyron

    Clapeyron

    Framework for the development and use of fluid-thermodynamic models

    Welcome to Clapeyron! This module provides both a large library of thermodynamic models and a framework for one to easily implement their own models. Clapeyron provides a framework for the development and use of fluid-thermodynamic models, including SAFT, cubic, activity, multi-parameter, and COSMO-SAC.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 8
    MLJ

    MLJ

    A Julia machine learning framework

    MLJ (Machine Learning in Julia) is a toolbox written in Julia providing a common interface and meta-algorithms for selecting, tuning, evaluating, composing and comparing about 200 machine learning models written in Julia and other languages. The functionality of MLJ is distributed over several repositories illustrated in the dependency chart below. These repositories live at the JuliaAI umbrella organization.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 9
    Measurements.jl

    Measurements.jl

    Error propagation calculator and library for physical measurements

    Error propagation calculator and library for physical measurements. It supports real and complex numbers with uncertainty, arbitrary precision calculations, operations with arrays, and numerical integration. Physical measures are typically reported with an error, a quantification of the uncertainty of the accuracy of the measurement. Whenever you perform mathematical operations involving these quantities you have also to propagate the uncertainty, so that the resulting number will also have an attached error to quantify the confidence about its accuracy. Measurements.jl relieves you from the hassle of propagating uncertainties coming from physical measurements, when performing mathematical operations involving them. The linear error propagation theory is employed to propagate the errors.
    Downloads: 5 This Week
    Last Update:
    See Project
  • Run Any Workload on Compute Engine VMs Icon
    Run Any Workload on Compute Engine VMs

    From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.

    Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
    Try Compute Engine
  • 10
    Memento.jl

    Memento.jl

    A flexible logging library for Julia

    Memento is a flexible hierarchical logging library for Julia.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 11
    ProbabilisticCircuits.jl

    ProbabilisticCircuits.jl

    Probabilistic Circuits from the Juice library

    This module provides a Julia implementation of Probabilistic Circuits (PCs), tools to learn structure and parameters of PCs from data, and tools to do tractable exact inference with them. Probabilistic Circuits provides a unifying framework for several family of tractable probabilistic models. PCs are represented as computational graphs that define a joint probability distribution as recursive mixtures (sum units) and factorizations (product units) of simpler distributions (input units). Given certain structural properties, PCs enable different range of tractable exact probabilistic queries such as computing marginals, conditionals, maximum a posteriori (MAP), and more advanced probabilistic queries.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 12
    The NLopt module for Julia

    The NLopt module for Julia

    Package to call the NLopt nonlinear-optimization library from Julia

    This module provides a Julia-language interface to the free/open-source NLopt library for nonlinear optimization. NLopt provides a common interface for many different optimization algorithms.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 13
    todo-comments.nvim

    todo-comments.nvim

    Highlight, list and search todo comments in your projects

    todo-comments.nvim is a Neovim plugin that highlights and searches for comment annotations such as TODO, FIX, HACK, and others. It helps developers keep track of tasks, warnings, or issues left in code by providing colorful highlights and integration with search tools like Telescope. The plugin is written in Lua and is highly configurable to match different workflows.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 14
    BenchmarkTools.jl

    BenchmarkTools.jl

    A benchmarking framework for the Julia language

    BenchmarkTools makes performance tracking of Julia code easy by supplying a framework for writing and running groups of benchmarks as well as comparing benchmark results. This package is used to write and run the benchmarks found in BaseBenchmarks.jl. The CI infrastructure for automated performance testing of the Julia language is not in this package but can be found in Nanosoldier.jl. Our story begins with two packages, "Benchmarks" and "BenchmarkTrackers". The Benchmarks package implemented an execution strategy for collecting and summarizing individual benchmark results, while BenchmarkTrackers implemented a framework for organizing, running, and determining regressions of groups of benchmarks. Under the hood, BenchmarkTrackers relied on Benchmarks for actual benchmark execution.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 15
    ConcurrentSim.jl

    ConcurrentSim.jl

    Discrete event process oriented simulation framework written in Julia

    A discrete event process-oriented simulation framework written in Julia inspired by the Python library SimPy. One of the longest-lived Julia packages (originally under the name SimJulia).
    Downloads: 4 This Week
    Last Update:
    See Project
  • 16
    Flux3D.jl

    Flux3D.jl

    3D computer vision library in Julia

    Flux3D.jl is a 3D vision library, written completely in Julia. This package utilizes Flux.jl and Zygote.jl as its building blocks for training 3D vision models and for supporting differentiation. This package also have support of CUDA GPU acceleration with CUDA.jl.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 17
    GDAL.jl

    GDAL.jl

    Thin Julia wrapper for GDAL - Geospatial Data Abstraction Library

    Julia wrapper for GDAL - Geospatial Data Abstraction Library. This package is a binding to the C API of GDAL/OGR. It provides only a C style usage, where resources must be closed manually, and datasets are pointers. Other packages can build on top of this to provide a more Julian user experience. See for example ArchGDAL.jl. Most users will want to use ArchGDAL.jl instead of using GDAL.jl directly.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    GLM.jl

    GLM.jl

    Generalized linear models in Julia

    GLM.jl is a Julia package for fitting linear and generalized linear models (GLMs) with a syntax and functionality familiar to users of R or other statistical environments. It is part of the JuliaStats ecosystem and is tightly integrated with StatsModels.jl for formula handling, and Distributions.jl for specifying error families. The package supports modeling through both formula-based (e.g. @formula) and matrix-based interfaces, allowing both high-level convenience and low-level control. Under the hood, GLM.jl separates the linear predictor and response objects, allowing flexible combinations of link functions, variance structures, and fitting methods.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 19
    General

    General

    The official registry of general Julia packages

    General is the default package registry for the Julia programming language, providing the foundation for Julia’s package manager, Pkg.jl. It stores essential information about packages, including versions, dependencies, and compatibility constraints, and serves as the central hub for the Julia package ecosystem. The registry is open to all and makes it easy for developers and researchers to access, install, and share packages across a wide range of domains. New packages and updates are added through pull requests, often automated via Registrator.jl, with qualifying requests merged automatically while others undergo manual review. The system also integrates with TagBot to automate tagging of package releases once registered. By maintaining clear rules for licensing and contribution, General ensures a reliable and transparent process for managing Julia’s open source package ecosystem.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 20
    Metatheory.jl

    Metatheory.jl

    General purpose algebraic metaprogramming

    Metatheory.jl is a general purpose term rewriting, metaprogramming and algebraic computation library for the Julia programming language, designed to take advantage of the powerful reflection capabilities to bridge the gap between symbolic mathematics, abstract interpretation, equational reasoning, optimization, composable compiler transforms, and advanced homoiconic pattern matching features. The core features of Metatheory.jl are a powerful rewrite rule definition language, a vast library of functional combinators for classical term rewriting and an e-graph rewriting, a fresh approach to term rewriting achieved through an equality saturation algorithm. Metatheory.jl can manipulate any kind of Julia symbolic expression type, as long as it satisfies the TermInterface.jl.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 21
    QuantumOptics.jl

    QuantumOptics.jl

    Library for the numerical simulation of closed as well as open quantum

    QuantumOptics.jl is a numerical framework written in the Julia programming language that makes it easy to simulate various kinds of open quantum systems. It is inspired by the Quantum Optics Toolbox for MATLAB and the Python framework QuTiP. QuantumOptics.jl optimizes processor usage and memory consumption by relying on different ways to store and work with operators. The framework comes with a plethora of pre-defined systems and interactions making it very easy to focus on the physics, not on the numerics. Every function in the framework has been severely tested with all tests and their code coverage presented on the framework's GitHub page.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 22
    ReTest.jl

    ReTest.jl

    Testing framework for Julia

    ReTest is a testing framework for Julia allowing defining tests in source files, whose execution is deferred and triggered on demand. This is useful when one likes to have definitions of methods and corresponding tests close to each other. This is also useful for code that is not (yet) organized as a package, and where one doesn't want to maintain a separate set of files for tests. Filtering run testsets with a Regex, which is matched against the descriptions of testsets. This is useful for running only part of the test suite of a package. For example, if you made a change related to addition, and included "addition" in the description of the corresponding testsets, you can easily run only these tests.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 23
    Rocket.jl

    Rocket.jl

    Functional reactive programming extensions library for Julia

    Rocket.jl is a Julia package for reactive programming using Observables, to make it easier to work with asynchronous data. Rocket.jl has been designed with a focus on performance and modularity.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 24
    AbstractFFTs.jl

    AbstractFFTs.jl

    A Julia framework for implementing FFTs

    A general framework for fast Fourier transforms (FFTs) in Julia. This package is mainly not intended to be used directly. Instead, developers of packages that implement FFTs (such as FFTW.jl or FastTransforms.jl) extend the types/functions defined in AbstractFFTs. This allows multiple FFT packages to co-exist with the same underlying fft(x) and plan_fft(x) interface.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    Catlab.jl

    Catlab.jl

    A framework for applied category theory in the Julia language

    Catlab.jl is a framework for applied and computational category theory, written in the Julia language. Catlab provides a programming library and interactive interface for applications of category theory to scientific and engineering fields. It emphasizes monoidal categories due to their wide applicability but can support any categorical structure that is formalizable as a generalized algebraic theory. First and foremost, Catlab provides data structures, algorithms, and serialization for applied category theory. Macros offer a convenient syntax for specifying categorical doctrines and type-safe symbolic manipulation systems. Wiring diagrams (aka string diagrams) are supported through specialized data structures and can be serialized to and from GraphML (an XML-based format) and JSON.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next