Open Source Linux Education Software

Browse free open source Education software and projects for Linux below. Use the toggles on the left to filter open source Education software by OS, license, language, programming language, and project status.

  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 1
    Virastyar

    Virastyar

    Virastyar is an spell checker for low-resource languages

    Virastyar is a free and open-source (FOSS) spell checker. It stands upon the shoulders of many free/libre/open-source (FLOSS) libraries developed for processing low-resource languages, especially Persian and RTL languages Publications: Kashefi, O., Nasri, M., & Kanani, K. (2010). Towards Automatic Persian Spell Checking. SCICT. Kashefi, O., Sharifi, M., & Minaie, B. (2013). A novel string distance metric for ranking Persian respelling suggestions. Natural Language Engineering, 19(2), 259-284. Rasooli, M. S., Kahefi, O., & Minaei-Bidgoli, B. (2011). Effect of adaptive spell checking in Persian. In NLP-KE Contributors: Omid Kashefi Azadeh Zamanifar Masoumeh Mashaiekhi Meisam Pourafzal Reza Refaei Mohammad Hedayati Kamiar Kanani Mehrdad Senobari Sina Iravanin Mohammad Sadegh Rasooli Mohsen Hoseinalizadeh Mitra Nasri Alireza Dehlaghi Fatemeh Ahmadi Neda PourMorteza
    Leader badge
    Downloads: 393 This Week
    Last Update:
    See Project
  • 2
    MIT Deep Learning Book

    MIT Deep Learning Book

    MIT Deep Learning Book in PDF format by Ian Goodfellow

    The Deep Learning textbook is a resource intended to help students and practitioners enter the field of machine learning in general and deep learning in particular. The online version of the book is now complete and will remain available online for free. MIT Deep Learning Book in PDF format (complete and parts) by Ian Goodfellow, Yoshua Bengio and Aaron Courville. An MIT Press book Ian Goodfellow and Yoshua Bengio and Aaron Courville. Written by three experts in the field, Deep Learning is the only comprehensive book on the subject. This is not available as PDF download. So, I have taken the prints of the HTML content and bound them into a flawless PDF version of the book, as suggested by the website itself. Printing seems to work best printing directly from the browser, using Chrome. Other browsers do not work as well.
    Downloads: 21 This Week
    Last Update:
    See Project
  • 3
    Biogenesis
    Biogenesis is an artificial life program that simulates the processes involved in the evolution of organisms. It shows colored segment based organisms that mutate and evolve in a 2D environment. Biogenesis is based on Primordial Life.
    Leader badge
    Downloads: 50 This Week
    Last Update:
    See Project
  • 4
    DeepLearning

    DeepLearning

    Deep Learning (Flower Book) mathematical derivation

    " Deep Learning " is the only comprehensive book in the field of deep learning. The full name is also called the Deep Learning AI Bible (Deep Learning) . It is edited by three world-renowned experts, Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Includes linear algebra, probability theory, information theory, numerical optimization, and related content in machine learning. At the same time, it also introduces deep learning techniques used by practitioners in the industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling and practical methods, and investigates topics such as natural language processing, Applications in speech recognition, computer vision, online recommender systems, bioinformatics, and video games. Finally, the Deep Learning book provides research directions covering theoretical topics including linear factor models, autoencoders, representation learning, structured probabilistic models, etc.
    Downloads: 8 This Week
    Last Update:
    See Project
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • 5
    Stanza

    Stanza

    Stanford NLP Python library for many human languages

    Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Stanza is a Python natural language analysis package. It contains tools, which can be used in a pipeline, to convert a string containing human language text into lists of sentences and words, to generate base forms of those words, their parts of speech and morphological features, to give a syntactic structure dependency parse, and to recognize named entities. The toolkit is designed to be parallel among more than 70 languages, using the Universal Dependencies formalism. Stanza is built with highly accurate neural network components that also enable efficient training and evaluation with your own annotated data.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 6
    ktrain

    ktrain

    ktrain is a Python library that makes deep learning AI more accessible

    ktrain is a Python library that makes deep learning and AI more accessible and easier to apply. ktrain is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, ktrain is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. With only a few lines of code, ktrain allows you to easily and quickly. ktrain purposely pins to a lower version of transformers to include support for older versions of TensorFlow. If you need a newer version of transformers, it is usually safe for you to upgrade transformers, as long as you do it after installing ktrain. As of v0.30.x, TensorFlow installation is optional and only required if training neural networks.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 7
    D2L.ai

    D2L.ai

    Interactive deep learning book with multi-framework code

    Interactive deep learning book with multi-framework code, math, and discussions. Adopted at 300 universities from 55 countries including Stanford, MIT, Harvard, and Cambridge. This open-source book represents our attempt to make deep learning approachable, teaching you the concepts, the context, and the code. The entire book is drafted in Jupyter notebooks, seamlessly integrating exposition figures, math, and interactive examples with self-contained code. Offers sufficient technical depth to provide a starting point on the path to actually becoming an applied machine learning scientist.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    Dual Clip Translator
    Translation of Selected text or Clipboard contents powered by Google. HotKeys Paste/Change Text auto translated. View in Balloon/Window the result of translation, besides being sent to the clipboard. Screen Capture of Desktop/Game > OCR > Translated.
    Leader badge
    Downloads: 23 This Week
    Last Update:
    See Project
  • 9
    Hello AI World

    Hello AI World

    Guide to deploying deep-learning inference networks

    Hello AI World is a great way to start using Jetson and experiencing the power of AI. In just a couple of hours, you can have a set of deep learning inference demos up and running for realtime image classification and object detection on your Jetson Developer Kit with JetPack SDK and NVIDIA TensorRT. The tutorial focuses on networks related to computer vision, and includes the use of live cameras. You’ll also get to code your own easy-to-follow recognition program in Python or C++, and train your own DNN models onboard Jetson with PyTorch. Ready to dive into deep learning? It only takes two days. We’ll provide you with all the tools you need, including easy to follow guides, software samples such as TensorRT code, and even pre-trained network models including ImageNet and DetectNet examples. Follow these directions to integrate deep learning into your platform of choice and quickly develop a proof-of-concept design.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 10
    LLM Course

    LLM Course

    Course to get into Large Language Models (LLMs)

    LLM Course is a hands-on, notebook-driven path for learning how large language models work in practice, from data curation to training, fine-tuning, evaluating, and deploying. It emphasizes reproducible experiments: each step is demonstrated with runnable code, clear dependencies, and references to commonly used open-source models and libraries. Learners get exposure to multiple adaptation strategies—LoRA/QLoRA, instruction fine-tuning, and alignment techniques—so they can choose approaches that fit their hardware and budgets. The materials also cover inference optimization and quantization to make serving LLMs feasible on commodity GPUs or even CPUs, which is crucial for side projects and startups. Evaluation is treated as a first-class topic, with examples of automatic and human-in-the-loop methods to catch regressions and verify quality beyond simple loss values. By the end, students have a mental model and a practical toolkit for iterating on datasets, training configs, etc.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    ML for Trading

    ML for Trading

    Code for machine learning for algorithmic trading, 2nd edition

    On over 800 pages, this revised and expanded 2nd edition demonstrates how ML can add value to algorithmic trading through a broad range of applications. Organized in four parts and 24 chapters, it covers the end-to-end workflow from data sourcing and model development to strategy backtesting and evaluation. Covers key aspects of data sourcing, financial feature engineering, and portfolio management. The design and evaluation of long-short strategies based on a broad range of ML algorithms, how to extract tradeable signals from financial text data like SEC filings, earnings call transcripts or financial news. Using deep learning models like CNN and RNN with financial and alternative data, and how to generate synthetic data with Generative Adversarial Networks, as well as training a trading agent using deep reinforcement learning.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    Initially, this project started as the 4th edition of Python Machine Learning. However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post. For those who are interested in knowing what this book covers in general, I’d describe it as a comprehensive resource on the fundamental concepts of machine learning and deep learning. The first half of the book introduces readers to machine learning using scikit-learn, the defacto approach for working with tabular datasets. Then, the second half of this book focuses on deep learning, including applications to natural language processing and computer vision.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    jieba

    jieba

    Stuttering Chinese word segmentation

    "Jaba" Chinese word segmentation, do the best Python Chinese word segmentation component. Four word segmentation modes are supported. Precise mode, which tries to cut the sentence most precisely, suitable for text analysis. Full mode, scans all the words that can be formed into words in the sentence, the speed is very fast, but the ambiguity cannot be resolved. The search engine mode, on the basis of the precise mode, divides the long words again to improve the recall rate, which is suitable for word segmentation in search engines. The paddle mode uses the PaddlePaddle deep learning framework to train the sequence labeling (bidirectional GRU) network model to achieve word segmentation. Also supports part-of-speech tagging. To use paddle mode, you need to install paddlepaddle-tiny, pip install paddlepaddle-tiny==1.6.1. Currently paddle mode supports jieba v0.40 and above. For versions below jieba v0.40, please upgrade jieba, pip install jieba --upgrade.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    Subliminal Blaster 4

    Subliminal Blaster 4

    Subliminal Blaster Powered 4 - Mude seus Hábitos! Change your habits

    Subliminal Blaster is a NLP software that shows text subliminal messages in your computer screen while you use it normaly for your activities. It re-programs your mind in a subconscious level while you exercite your conscious with your activities like browsing, working, watching video and others. Subliminal Blaster é um software de PNL que exibe mensagens subliminares na tela do PC enquanto você utiliza normalmente para suas atividades. Ele reprograma sua mente a nível subconsciente enquanto você exercita seu consciente em suas atividades. WE ARE NOW ON VERSION 4! Please support the project by donating bitcoins 1GRYGnSmpuU1ZuXodn2H9UVEpVRBx5CTL2 Or dogecoins! DBfkGrdLvmpbYQzcRCm9KLUuPk9Zigjjod Would you like to contribute? Go to our Facebook page! https://www.facebook.com/SubliminalBlasterIntl/
    Leader badge
    Downloads: 21 This Week
    Last Update:
    See Project
  • 15
    Interpretable machine learning

    Interpretable machine learning

    Book about interpretable machine learning

    This book is about interpretable machine learning. Machine learning is being built into many products and processes of our daily lives, yet decisions made by machines don't automatically come with an explanation. An explanation increases the trust in the decision and in the machine learning model. As the programmer of an algorithm you want to know whether you can trust the learned model. Did it learn generalizable features? Or are there some odd artifacts in the training data which the algorithm picked up? This book will give an overview over techniques that can be used to make black boxes as transparent as possible and explain decisions. In the first chapter algorithms that produce simple, interpretable models are introduced together with instructions how to interpret the output. The later chapters focus on analyzing complex models and their decisions. In an ideal future, machines will be able to explain their decisions and make a transition into an algorithmic age more human.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    Lucid

    Lucid

    A collection of infrastructure and tools for research

    Lucid is a collection of infrastructure and tools for research in neural network interpretability. Lucid is research code, not production code. We provide no guarantee it will work for your use case. Lucid is maintained by volunteers who are unable to provide significant technical support. Start visualizing neural networks with no setup. The following notebooks run right from your browser, thanks to Collaboratory. It's a Jupyter notebook environment that requires no setup to use and runs entirely in the cloud. You can run the notebooks on your local machine, too. Clone the repository and find them in the notebooks subfolder. You will need to run a local instance of the Jupyter notebook environment to execute them. Feature visualization answers questions about what a network, or parts of a network, are looking for by generating examples.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    choco
    Choco is not hosted on sourceforge anymore. Please now visit http://choco-solver.org/ !
    Downloads: 7 This Week
    Last Update:
    See Project
  • 18
    This project has moved to GitHub.
    Downloads: 29 This Week
    Last Update:
    See Project
  • 19
    JaCoP
    JaCoP is a Java Constraint Programming solver. It provides a significant number of (global) constraints to facilitate efficient modeling of combinatorial problems, as well as modular design of search. Documentation is available at project Web site. Please, note that the sources from version 4.0 are only available at GitHub.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 20
    Computer Science Books

    Computer Science Books

    Computer Science Books Computer Technology Books PDF

    The books in this warehouse come from the Internet, and the copyright belongs to the original author. It is not for profit, but only for learning and use. If there is any infringement, please contact us.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    Dopamine

    Dopamine

    Framework for prototyping of reinforcement learning algorithms

    Dopamine is a research framework for fast prototyping of reinforcement learning algorithms. It aims to fill the need for a small, easily grokked codebase in which users can freely experiment with wild ideas (speculative research). This first version focuses on supporting the state-of-the-art, single-GPU Rainbow agent (Hessel et al., 2018) applied to Atari 2600 game-playing (Bellemare et al., 2013). Specifically, our Rainbow agent implements the three components identified as most important by Hessel et al., n-step Bellman updates, prioritized experience replay, and distributional reinforcement learning. For completeness, we also provide an implementation of DQN (Mnih et al., 2015). For additional details, please see our documentation. We provide a set of Colaboratory notebooks which demonstrate how to use Dopamine. We provide a website which displays the learning curves for all the provided agents, on all the games.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    NiftyNet

    NiftyNet

    An open-source convolutional neural networks platform for research

    An open-source convolutional neural networks platform for medical image analysis and image-guided therapy. NiftyNet is a TensorFlow-based open-source convolutional neural networks (CNNs) platform for research in medical image analysis and image-guided therapy. NiftyNet’s modular structure is designed for sharing networks and pre-trained models. Using this modular structure you can get started with established pre-trained networks using built-in tools. Adapt existing networks to your imaging data. Quickly build new solutions to your own image analysis problems. NiftyNet currently supports medical image segmentation and generative adversarial networks. NiftyNet is not intended for clinical use.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    PyTorch GAN Zoo

    PyTorch GAN Zoo

    A mix of GAN implementations including progressive growing

    PyTorch GAN Zoo is a comprehensive open research toolbox designed for experimenting with and developing Generative Adversarial Networks (GANs) using PyTorch. The project provides modular implementations of popular GAN architectures, including Progressive Growing of GANs (PGAN), DCGAN, and an experimental StyleGAN version. It is built to support both researchers and developers who want to train, evaluate, and extend GANs efficiently across diverse datasets such as CelebA-HQ, FashionGen, DTD, and CIFAR-10. In addition to core GAN training, the repository includes tools for model evaluation, such as Inception Score and SWD metrics, as well as advanced features like GDPP for diverse generation and AC-GAN conditioning for class-specific synthesis. The framework also supports “inspirational generation,” enabling style or content transfer from reference images through pre-trained models.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Spinning Up in Deep RL

    Spinning Up in Deep RL

    Educational resource to help anyone learn deep reinforcement learning

    Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that makes it easier to learn about deep reinforcement learning (deep RL). For the unfamiliar, reinforcement learning (RL) is a machine learning approach for teaching agents how to solve tasks by trial and error. Deep RL refers to the combination of RL with deep learning. At OpenAI, we believe that deep learning generally, and deep reinforcement learning specifically, will play central roles in the development of powerful AI technology. To ensure that AI is safe, we have to come up with safety strategies and algorithms that are compatible with this paradigm. As a result, we encourage everyone who asks this question to study these fields. However, while there are many resources to help people quickly ramp up on deep learning, deep reinforcement learning is more challenging to break into.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    kcws

    kcws

    Deep Learning Chinese Word Segment

    Deep learning chinese word segment. Install the bazel code construction tool and install tensorflow (currently this project requires tf 1.0.0alpha version or above) Switch to the code directory of this project and run ./configure. Compile background service. Pay attention to the public account of waiting for words and reply to kcws to get the corpus download address. Extract the corpus to a directory. Change to the code directory.After installing tensorflow, switch to the kcws code directory. Currently, the custom dictionary is supported in the decoding stage. Please refer to kcws/cc/test_seg.cc for specific usage. The dictionary is in text format.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next