Неевклидова геометрия

Материал из Википедии — свободной энциклопедии
Это текущая версия страницы, сохранённая LGB (обсуждение | вклад) в 14:57, 12 ноября 2023 (оформление). Вы просматриваете постоянную ссылку на эту версию.
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску
Сравнение сферической, эвклидовой и гиперболической геометрий:
1. Сферическая геометрия;
2. Евклидова геометрия;
3. Геометрия Лобачевского

Неевкли́дова геоме́трия — в буквальном понимании — любая геометрическая система, которая отличается от геометрии Евклида; однако традиционно термин «неевклидова геометрия» применяется в более узком смысле и относится только к двум геометрическим системам[1]: геометрии Лобачевского и сферической геометрии[2].

Как и евклидова, эти геометрии относятся к метрическим геометриям пространства постоянной кривизны. Нулевая кривизна соответствует евклидовой геометрии, положительная — сферической, отрицательная — геометрии Лобачевского[1].

Метрика для плоскости

[править | править код]

Вид метрики для однородных планиметрий зависит от выбранной системы (криволинейных) координат; далее приводятся формулы для случая полугеодезических координат[1]:

История понятия

[править | править код]

Аксиоматика

[править | править код]

Выше дано определение неевклидовых геометрий в терминах дифференциальной геометрии; однако можно описать их и с помощью чисто геометрической аксиоматики. Первая полная система аксиом для евклидовой и неевклидовой геометрий была построена Давидом Гильбертом в своём труде «Основания геометрии».

Исторически главное отличие неевклидовых геометрий от евклидовой отмечалось в теории параллельных прямых. Согласно аксиоме евклидовой геометрии, через точку вне данной прямой можно провести единственную прямую, параллельную данной; в геометрии Лобачевского таких прямых бесконечно много, а в сферической геометрии параллельных прямых нет вообще (все прямые пересекаются). Именно этот факт Гильберт положил в основу своей аксиоматики. Соответственно многие теоремы в разных геометриях различаются. Примеры:

Величина В евклидовой
геометрии
В геометрии
Лобачевского
В сферической
геометрии
Сумма углов треугольника равна меньше больше
Отношение длины окружности
к её диаметру
равно больше меньше

В то же время существует класс аксиом (например, аксиомы движения), общий для всех трёх геометрий[1]. Геометрические теоремы, общие для евклидовой геометрии и для геометрии Лобачевского, принято называть «абсолютной геометрией»[3].

Примечания

[править | править код]
  1. 1 2 3 4 Математическая энциклопедия, 1982.
  2. или локально схожей с ней геометрии Римана.
  3. Абсолютная геометрия // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1977. — Т. 1. — Стб. 34.

Литература

[править | править код]