R. K. Guy and W. O. J. Moser, <a href="https://web.archive.org/web/2024*/https://www
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
R. K. Guy and W. O. J. Moser, <a href="https://web.archive.org/web/2024*/https://www
R. K. Guy and W. O. J. Moser, <a href="httphttps://www.fq.math.ca/Scanned/34-2/guy.pdf">Numbers of subsequences without isolated odd members</a>, Fibonacci Quarterly 34:2 (1996), pp. 152-155.
editing
approved
approved
editing
editing
approved
R. K. Guy and W. O. J. Moser, Numbers of subsequences without isolated odd members. Fibonacci Quarterly, 34, No. 2, 152-155 (1996).
T. D. Noe, <a href="/A007481/b007481.txt">Table of n, a(n) for n = 0..400</a>
R. K. Guy and W. O. J. Moser, <a href="http://www.fq.math.ca/Scanned/34-2/guy.pdf">Numbers of subsequences without isolated odd members</a>, Fibonacci Quarterly 34:2 (1996), pp. 152-155.
G.f.: (x^3+2*x+1)/(-2*x^4-3*x^2+1) [From . - _Harvey P. Dale, _, Feb 29 2012]
(PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; 2, 0, 3, 0]^n*[1; 2; 3; 7])[1, 1] \\ Charles R Greathouse IV, Mar 02 2016
approved
editing
editing
approved
A055099(n) = a(2*n+1) - a(2*n) = a(2*(n+1)) - a(2*n+1). - Reinhard Zumkeller, Oct 25 2015
(Haskell)
a007481 n = a007481_list !! n
a007481_list = 1 : 2 : 3 : 7 : zipWith (+)
(map (* 3) $ drop 2 a007481_list) (map (* 2) a007481_list)
-- Reinhard Zumkeller, Oct 25 2015
Cf. A055099.
approved
editing
editing
approved
<a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0, 3, 0, 2).
approved
editing