https://huggingface.co/tencent/POINTS-Reader
- llm
- model
- embed_tokens
- layers
- 0
- input_layernorm
- mlp
- down_proj
- gate_proj
- up_proj
- post_attention_layernorm
- self_attn
- o_proj
- q_proj
- k_proj
- v_proj
- 0
- norm
- lm_head
- model
- vision_encoder
- patch_embed.proj
- blocks
- 0
- attn
- proj
- qkv
- mlp.fc1
- mlp.fc2
- norm1
- norm2
- attn
- 0
- merger
- ln_q
- mlp
- 0
- 2
- vision_projector
- ln_q
- mlp
- 0
- 2
# export HF_ENDPOINT=https://hf-mirror.com
hf download tencent/POINTS-Reader --local-dir models/POINTS-Reader
cd WePOINTS
pip install -e .
cd ../
transformer
python inference.py
配置支持 few-shot,但是只能用在很特殊的场景(数据同质化严重) 配置2个Prompt,默认的Prompt效果就不错。
gradio app
pip install gradio
python app.py
sglang (TODO)
conda create -n sglang python=3.12
cd sglang/
conda activate sglang
pip install --upgrade pip
pip install -e "python[all]"
cd ../
python3 -m sglang.launch_server \
--model-path models/POINTS-Reader \
--served-model-name POINTS-Reader \
--tp-size 1 \
--dp-size 1 \
--chat-template points-v15-chat \
--trust-remote-code \
--port 8081
pip install accelerate trl
# 单卡Lora训练(24G显卡),训练vision_projector和llm部分。
python train_wepoints.py \
--model_name_or_path "models/POINTS-Reader" \
--dataset_name "axolotl-ai-co/llava-instruct-mix-vsft-small" \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 4 \
--output_dir ./pointsv15-sft-lora-output \
--learning_rate 1e-4 \
--num_train_epochs 1 \
--logging_steps 1 \
--do_eval True \
--eval_strategy "steps" \
--eval_steps 30 \
--save_strategy "steps" \
--save_steps 30 \
--bf16 True \
--use_peft \
--lora_r 64 \
--lora_alpha 128 \
--lora_target_modules "q_proj,k_proj,v_proj,o_proj,gate_proj,up_proj,down_proj,vision_projector.mlp.0,vision_projector.mlp.2" \
--warmup_ratio 0.1 \
--lr_scheduler_type cosine \
--weight_decay 0.01 \
--gradient_checkpointing True \
--only_one_turn False
自定义的数据集需要处理为 axolotl-ai-co/llava-instruct-mix-vsft-small 相同格式,注意user prompt 和 inference.py 中相同。
