-
Notifications
You must be signed in to change notification settings - Fork 0
jiechau/check_sys_info
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
# check_sys_info venv: py39 tf39 tf39cpu pt39 pt311 git clone https://gitlab.com/jiechau/check_sys_info.git ## venv # tf39 /usr/local/bin/python3.9 -m venv --system-site-packages tf39 source tf39/bin/activate pip install -r requirements.tf39.pip.txt # tf39cpu /usr/local/bin/python3.9 -m venv --system-site-packages tf39cpu source tf39cpu/bin/activate pip install -r requirements.tf39cpu.pip.txt # pt39 (used in: gpu or cpu) /usr/local/bin/python3.9 -m venv --system-site-packages pt39 source pt39/bin/activate pip install -r requirements.pt39.pip.txt # pt311 (used in: gpu or cpu) /usr/local/bin/python3.11 -m venv --system-site-packages pt311 source pt311/bin/activate pip install -r requirements.pt311.pip.txt ## tensorflow regression # use venv tf39 tf39cpu to switch gpu/cpu python tf_dnn.py ## torch regression # use venv pt39 pt_dnn.py ## tensorflow image classification # use venv tf39 tf39cpu to switch gpu/cpu python tf_mn.py python tf_mni.py (just inference. need to unmark last line of pt_mn.py) ## torch image classification # use venv pt39 pt_mn.py pt_mni.py (just inference. need to unmark last line of pt_mn.py) pt_mn_cpu.py pt_mni_cpu.py (just inference. need to unmark last line of pt_mn_cpu.py) ## sentencetransformer # pt_sentencetransformer.requirements.cuda.pip.txt # pt_sentencetransformer.requirements.cpu.pip.txt /usr/local/bin/python3.9 -m venv --system-site-packages sss source sss/bin/activate pip install --upgrade pip pip install -r pt_sentencetransformer.requirements.cuda.pip.txt # or cpu version: pip install -r pt_sentencetransformer.requirements.cpu.pip.txt python pt_sentencetransformer1.py python pt_sentencetransformer2.py python pt_sentencetransformer3.py ## spacy # requirements.py39spacy.pip.txt /usr/local/bin/python3.9 -m venv --system-site-packages py39spacy source py39spacy/bin/activate pip install --upgrade pip pip install spacy pip install spacy[transformers] pip install cupy-cuda12x # if GPU, see nvidia-smi or nvcc --version python -m spacy download zh_core_web_trf python -m spacy info # inference python -W ignore spacy_inference.py # train data python spacy_data.py # https://spacy.io/usage/training#config # zh, ner, and save to base_config.cfg python -m spacy init fill-config ./base_config.cfg ./config.cfg python -m spacy train config.cfg --output ./output --paths.train ./train.spacy --paths.dev ./dev.spacy --gpu-id 0 # --training.max_epochs 10 # inference python -W ignore spacy_inference_new.py ## hugging face TFDistilBertForSequenceClassification # use venv hf39tf /usr/local/bin/python3.9 -m venv --system-site-packages hf39tf source hf39tf/bin/activate pip install --upgrade pip pip install -r requirements.hf39tf.pip.txt python hf_TFDistilBertForSequenceClassification.py python hf_TFDistilBertForSequenceClassification_inference.py ## hugging face TFAutoModelForImageClassification # use venv hf39tf /usr/local/bin/python3.9 -m venv --system-site-packages hf39tf source hf39tf/bin/activate pip install --upgrade pip pip install -r requirements.hf39tf.pip.txt python hf_TFAutoModelForImageClassification.py python hf_TFAutoModelForImageClassification_inference.py ## hugging face AutoModelForImageClassification # use venv hf39pt /usr/local/bin/python3.9 -m venv --system-site-packages hf39pt source hf39pt/bin/activate pip install --upgrade pip pip install -r requirements.hf39pt.pip.txt python hf_AutoModelForImageClassification.py python hf_AutoModelForImageClassification_inference.py ## hugging face llama2 NousResearch # use venv ppp /usr/local/bin/python3.9 -m venv --system-site-packages ppp source ppp/bin/activate pip install --upgrade pip pip install -r requirements.ppp.pip.txt # split to 3 part, in case of lack of resource (ram/vram) hf_llama2_NousResearch.py # train hf_llama2_NousResearch_merge.py # merge after train. save to custom model hf_llama2_NousResearch_inference.py # use custom model to do inference ## microsoft graphRAG # this one is just note, in 2024/07 openai launch gpt-4o-mini which is very 'cheap' to make things possible everything follow the tutorial: https://microsoft.github.io/graphrag/posts/get_started/ activate your openai 'Organization account' (not monthly user subscription) by deposit $10 https://platform.openai.com/settings/organization/billing/overview create api key https://platform.openai.com/organization/api-keys create a virtual env, e.g. py312graphrag you'll need access to openai's chat and embeddings api edit ragtest/.env put api key edit ragtest/settings.yaml # model: gpt-4o-mini get txt file Alice's Adventures in Wonderland https://manybooks.net/titles/carrolll2888528885-8.html put txt file in ragtest/input calculate token https://platform.openai.com/tokenizer # example check_sys_info/graphrag_book/ragtest_az/settings.yaml check_sys_info/graphrag_book/ragtest_openai/settings.yaml # read check_sys_info/graphrag_book/README.txt ## docker # tensorflow / GPU docker run -it --rm --gpus all tensorflow/tensorflow:latest-gpu bash # tensorflow / CPU docker run -it --rm tensorflow/tensorflow:latest bash # "Ubuntu 22.04.3 LTS (Jammy Jellyfish)" # inside container bash, run these: nvidia-smi apt update; apt install git git clone https://gitlab.com/jiechau/check_sys_info.git cd check_sys_info python tf_mn.py # every epoch should be less than 5 sec ## docker # pytorch / gpu or cpu docker run -it --rm --gpus all nvcr.io/nvidia/pytorch:23.10-py3 bash # inside container bash, run these: git clone https://gitlab.com/jiechau/check_sys_info.git nvidia-smi cd check_sys_info python pt_mn.py # every epoch should be less than 10 sec python pt_mn_cpu.py P.S. ## nvidia driver on ubuntu 22.04 https://ivonblog.com/posts/ubuntu-install-nvidia-drivers/ apt install nvidia-driver-545 GeForce GTX 1060 3GB (2016) VGA compatible controller: NVIDIA Corporation GP106 [GeForce GTX 1060 3GB] (rev a1) GeForce RTX 3060 12G (2021) VGA compatible controller: NVIDIA Corporation GA106 [GeForce RTX 3060 Lite Hash Rate] (rev a1) ## nvidia driver on ROG Flow X16 (2022) GV601 GV601RM-0042E6900HS ## RTX 3060 https://medium.com/@abhig0303/setting-up-tensorflow-with-cuda-for-gpu-on-windows-11-a157db4dae3e ROG Flow X16 (2022) GV601 GV601RM-0042E6900HS 1TB PCIe® 4.0 NVMe™ M.2 Performance SSD 8GB DDR5-4800 SO-DIMM x 2 AMD Ryzen™ 9 6900HS Mobile Processor (8-core/16-thread, 16MB cache, up to 4.9 GHz max boost) NVIDIA® GeForce RTX™ 3060 Laptop GPU ROG Boost: 1475MHz* at 125W (1425MHz Boost Clock+50MHz OC, 100W+25W Dynamic Boost) 6GB GDDR6 RTX 3060 Operating System : Windows 11 Home Graphics Card: NVIDIA GPU RTX-3060 # Python — — — — — — — — 3.8 (3.9 ok too) # Tensorflow — — — — — —2.5 (only 2.5 works) # Keras — — — — — — — — — 2.5 # CUDA Toolkit — — — — — 11.8.0 # cuDNN library — — — — — 8.6.0 # conda create -n py39tf25 python=3.9; conda activate py39tf25 # # only pip install works (not conda install) # pip install tensorflow==2.5 go_conda.bat %windir%\System32\cmd.exe "/K" C:\ProgramData\anaconda3\Scripts\activate.bat C:\ProgramData\anaconda3 cdj.bat cd C:\share\jiechau\ml_codes conda env list conda activate py39tf25 conda activate py39tf25cpu conda activate py39pt210pip conda activate py39pt210conda conda activate py39pt210cpu conda activate ttt
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published