CWE-943: Improper Neutralization of Special Elements in Data Query Logic
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product generates a query intended to access or manipulate data in a data store such as a database, but it does not neutralize or incorrectly neutralizes special elements that can modify the intended logic of the query.
Depending on the capabilities of the query language, an attacker could inject additional logic into the query to:
The ability to execute additional commands or change which entities are returned has obvious risks. But when the product logic depends on the order or number of entities, this can also lead to vulnerabilities. For example, if the query expects to return only one entity that specifies an administrative user, but an attacker can change which entities are returned, this could cause the logic to return information for a regular user and incorrectly assume that the user has administrative privileges. While this weakness is most commonly associated with SQL injection, there are many other query languages that are also subject to injection attacks, including HTSQL, LDAP, DQL, XQuery, Xpath, and "NoSQL" languages. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Architectural Concepts" (CWE-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Example 1 The following code dynamically constructs and executes a SQL query that searches for items matching a specified name. The query restricts the items displayed to those where owner matches the user name of the currently-authenticated user. (bad code)
Example Language: C#
...
string userName = ctx.getAuthenticatedUserName(); string query = "SELECT * FROM items WHERE owner = '" + userName + "' AND itemname = '" + ItemName.Text + "'"; sda = new SqlDataAdapter(query, conn); DataTable dt = new DataTable(); sda.Fill(dt); ... The query that this code intends to execute follows: (informative)
SELECT * FROM items WHERE owner = <userName> AND itemname = <itemName>;
However, because the query is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if itemName does not contain a single-quote character. If an attacker with the user name wiley enters the string: (attack code)
name' OR 'a'='a
for itemName, then the query becomes the following: (attack code)
SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name' OR 'a'='a';
The addition of the: (attack code)
OR 'a'='a
condition causes the WHERE clause to always evaluate to true, so the query becomes logically equivalent to the much simpler query: (attack code)
SELECT * FROM items;
This simplification of the query allows the attacker to bypass the requirement that the query only return items owned by the authenticated user; the query now returns all entries stored in the items table, regardless of their specified owner. Example 2 The code below constructs an LDAP query using user input address data: (bad code)
Example Language: Java
context = new InitialDirContext(env);
String searchFilter = "StreetAddress=" + address; NamingEnumeration answer = context.search(searchBase, searchFilter, searchCtls); Because the code fails to neutralize the address string used to construct the query, an attacker can supply an address that includes additional LDAP queries. Example 3 Consider the following simple XML document that stores authentication information and a snippet of Java code that uses XPath query to retrieve authentication information: (informative)
Example Language: XML
<users>
<user> </users><login>john</login> </user><password>abracadabra</password> <home_dir>/home/john</home_dir> <user> <login>cbc</login> </user><password>1mgr8</password> <home_dir>/home/cbc</home_dir> The Java code used to retrieve the home directory based on the provided credentials is: (bad code)
Example Language: Java
XPath xpath = XPathFactory.newInstance().newXPath();
XPathExpression xlogin = xpath.compile("//users/user[login/text()='" + login.getUserName() + "' and password/text() = '" + login.getPassword() + "']/home_dir/text()"); Document d = DocumentBuilderFactory.newInstance().newDocumentBuilder().parse(new File("db.xml")); String homedir = xlogin.evaluate(d); Assume that user "john" wishes to leverage XPath Injection and login without a valid password. By providing a username "john" and password "' or ''='" the XPath expression now becomes (attack code)
//users/user[login/text()='john' or ''='' and password/text() = '' or ''='']/home_dir/text()
This lets user "john" login without a valid password, thus bypassing authentication.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
It could be argued that data query languages are effectively a command language - albeit with a limited set of commands - and thus any query-language injection issue could be treated as a child of CWE-74. However, CWE-943 is intended to better organize query-oriented issues to separate them from fully-functioning programming languages, and also to provide a more precise identifier for the many query languages that do not have their own CWE identifier.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |