在机器学习领域,混淆矩阵(confusion matrix),又称为可能性表格或是错误矩阵。它是一种特定的矩阵用来呈现算法性能的可视化效果,通常用于对监督学习中的分类问题进行评估。这个名字来源于它可以非常容易的表明多个类别在预测时的混淆情况(也就是某一个class被预测成另一个class)。
前面一篇文章我们已经介绍过,在分类问题中,我们的预测结果可能出现的几种情况,分别是TP、TN、FP、FN。第一个字母表示我们预测结果与真实结果比较的是否是正确的,其中T(True)表示预测的是正确的,F(False)表示预测的是错误的;第二个字母表示我们的预测结果类型,其中P(Positive)表示的是正例;N(Negative)表示的是假例。