机器学习——混淆矩阵详细原理介绍

混淆矩阵是评估机器学习分类模型性能的重要工具,尤其在监督学习中。它以矩阵形式展示预测结果与真实结果的对比,对角线上的值表示正确预测数,通常期望这些值最大化。本文介绍了混淆矩阵在二分类和多分类问题中的应用,并探讨了调整判定阈值对模型效果的影响。AI自研社提供丰富的人工智能和机器学习资源,适合学习和交流。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在机器学习领域,混淆矩阵(confusion matrix),又称为可能性表格或是错误矩阵。它是一种特定的矩阵用来呈现算法性能的可视化效果,通常用于对监督学习中的分类问题进行评估。这个名字来源于它可以非常容易的表明多个类别在预测时的混淆情况(也就是某一个class被预测成另一个class)。

前面一篇文章我们已经介绍过,在分类问题中,我们的预测结果可能出现的几种情况,分别是TP、TN、FP、FN。第一个字母表示我们预测结果与真实结果比较的是否是正确的,其中T(True)表示预测的是正确的,F(False)表示预测的是错误的;第二个字母表示我们的预测结果类型,其中P(Positive)表示的是正例;N(Negative)表示的是假例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白话机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值