信号与系统第二章 线性时不变

本文探讨了离散和连续系统中卷积的概念,如何通过系统脉冲响应计算函数响应,以及线性时不变系统的特性,如无记忆性、因果性和初始松弛条件。还提及了卷积的运算规则,如交换律和分配律,以及使用差分方程的递归方法和冲击函数的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

36979696515041c2ac45a7e9912c8ef6.png

这个求和注意了,最好看成一个离散函数各个部分相加起来。类似于系统加法。有利于后面思考线性时不变系统。

ed2d3bc15af24d9f9e93f0bf75791fcc.png 

这里引出了卷积,同理,我们根据在0时刻的系统脉冲响应,可以求出其他任何时刻。而这些求和,就是对整个函数的响应。

本来应该脉冲函数 狄拉克{n}对应的响应是h(n)平移的话 h(n-k) 所以最后是x(k)乘积求和。但这个y是关于n的函数,k是根据x的定义域决定的。

ba9d33076c524913bbacb5584e8e80af.png

这个是画图理解脉冲函数的筛选性质 虽然脉冲函数本身是无穷大 但后面有个无穷小的微分 

和离散情况是一样的 只不过连续函数的求和 最终就是积分啦

435eddc44855455eb5314acbf7cd876e.png 

同样也要注意 y是关于t的函数 积分里还有个积分变量未知数

卷积符合交换律 利用简单的变量代换就行

卷积还符合分配律 结合律 证明就是算数证明过程

不在列举

26db435aed1443a1b5fa5bb9b8637b9e.png 

对于无记忆系统来说  一个离散的线形时不变系统 对于脉冲响应 只能是脉冲响应的倍数

5552f119aeea4ceea06b54923a1f2a14.png 

同理 对于连续线形时不变系统 脉冲响应也只能是脉冲信号 因为对于连续函数的卷积 只有脉冲信号能筛选出那个时刻的值

98f50d3357cc4e719705a9598896dc30.png 

这是因果性 现在的结果只取决于过去 那么就是n小于0的时候 h(n)只能是0 不然 我们翻转h函数 x轴大于0的部分就有值了 这样算面积的时候 就会把未来的时间的x也考虑进来。

0955ee9574e145e38cc76231f94fde67.png 

这里提到了一个概念 初始松弛条件 表示在输入变成非0之前 响应一直为0

33822f947e5c446080f89d2e41daf03c.png 

这里提到了 差分方程可以用递归方法

d96a5a189f5548f58dc648fa2e17fac3.png 

这里提到了脉冲信号可以有几种不同的理解 但最终的结果是一样的 

759acbb59c6c462896b8f86f1984bb5c.png 

这是一个很重要的思想 冲击函数不好描述 但通过卷积 我们是可以去理解他的

aa45c4507e54459c82d06367ba835543.png 

这个推导很重要

核心思想是 我们一般换元都是换未知数 实际上可以对整个函数进行替换

最终符号要注意 因为换元导致上下限变换 负号让它们又换了回去

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yxriyin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值