这个求和注意了,最好看成一个离散函数各个部分相加起来。类似于系统加法。有利于后面思考线性时不变系统。
这里引出了卷积,同理,我们根据在0时刻的系统脉冲响应,可以求出其他任何时刻。而这些求和,就是对整个函数的响应。
本来应该脉冲函数 狄拉克{n}对应的响应是h(n)平移的话 h(n-k) 所以最后是x(k)乘积求和。但这个y是关于n的函数,k是根据x的定义域决定的。
这个是画图理解脉冲函数的筛选性质 虽然脉冲函数本身是无穷大 但后面有个无穷小的微分
和离散情况是一样的 只不过连续函数的求和 最终就是积分啦
同样也要注意 y是关于t的函数 积分里还有个积分变量未知数
卷积符合交换律 利用简单的变量代换就行
卷积还符合分配律 结合律 证明就是算数证明过程
不在列举
对于无记忆系统来说 一个离散的线形时不变系统 对于脉冲响应 只能是脉冲响应的倍数
同理 对于连续线形时不变系统 脉冲响应也只能是脉冲信号 因为对于连续函数的卷积 只有脉冲信号能筛选出那个时刻的值
这是因果性 现在的结果只取决于过去 那么就是n小于0的时候 h(n)只能是0 不然 我们翻转h函数 x轴大于0的部分就有值了 这样算面积的时候 就会把未来的时间的x也考虑进来。
这里提到了一个概念 初始松弛条件 表示在输入变成非0之前 响应一直为0
这里提到了 差分方程可以用递归方法
这里提到了脉冲信号可以有几种不同的理解 但最终的结果是一样的
这是一个很重要的思想 冲击函数不好描述 但通过卷积 我们是可以去理解他的
这个推导很重要
核心思想是 我们一般换元都是换未知数 实际上可以对整个函数进行替换
最终符号要注意 因为换元导致上下限变换 负号让它们又换了回去