微分流形入门1:拓扑流形和标量场

文章介绍了微分几何中的核心概念,如拓扑、拓扑空间和流形的定义。拓扑是集合的子集系统,而拓扑空间是具有拓扑结构的集合。微分流形是局部同胚于欧几里得空间R^n的集合,强调了其平滑性质。文章讨论了流形上的坐标表示、同胚映射以及光滑映射的判别,还提到了光滑标量场与微分结构的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因为最近看了不少知识不太理解,查了下资料,发现微分流形有比较详细的解释。遗憾的是目前还没认真学习过这方面的知识,现在补一章,主要参考:一文入门微分几何(物理人版) - 知乎

 

拓扑是一个集合,是集合X的所有的子集。而且要任意多个并都在这个集合中才行。

 

这个例子很有意思,无限个闭集的并可能是一个开集。

直观的记忆就是拓扑就是一个集合的所有的开子集吧。

 

拓扑空间就是定义了拓扑的集合。拓扑里的元素叫做拓扑空间的开集。

一般来说,我们知道的大部分集合都是拓扑空间。

 

 

 双射且连续,那么他们就是同胚的,有一个同胚映射f。

 

大部分空间都是浩斯多夫空间。

 

 这里比较重要,M的每一个局部都同胚于R^n的一个开子集。那么M就是拓扑流形。

 这里要开始引入坐标表示了。对于流行上的每一个点p,都有一个同胚为其分配了一个坐标。因为需要很多开覆盖,所以就需要很多的坐标系。那么自然就会引入开覆盖的重合部分,会有两套坐标。那么可以通过一个映射来进行重叠部分的坐标变换。这里我们就能感受到,微分换元的一些信息。

流形应该总是各种意义上的“光滑”的

 

流形之间的映射的光滑是比较复杂的, 需要利用R^n作为媒介。先从Rn同胚返回到M上,在用f变成N,再变成R^n上,然后判断光滑性。

这是一个非常重要的概念,我们用对偶空间的时候也会用到。那就是泛函,这是把流形映射到一个实数的,映射。这个映射本身也可以作为函数的自变量。

标量场就是这些所有函数的集合。

 

这里的思考逻辑我们要记住,首先拓扑就是把一个集合拆成一个个开覆盖。然后我们想要给拓扑空间上的每个点都分配一个坐标,我们就把这些开覆盖都局部同胚到Rn空间里,这样它就都有了坐标。把这些开集合并,覆盖整个拓扑空间,就是拓扑流形。接着,我们想在拓扑流形上研究微分,那么就要保证拓扑上具有微分结构,也就是光滑标量场的存在。为什么光滑标量场能够具备微分结构呢?首先拓扑流形表示局部同胚于Rn,那么这个局部同胚的映射首先得是光滑的。这就要考虑到两两之间的重合部分也得是光滑的,所以就引出了坐标变换的映射是光滑的才行。

如果流形本身是光滑的,那么流形之间的映射是不是光滑的呢?那要利用一个更复杂的函数的光滑性来判断。 

最后,光滑标量场和我们说的第一种情况是等价的:

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yxriyin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值