数学分析:换元详解

文章介绍了如何使用格拉姆斯密特正交化方法来计算n维空间中k个向量围成的多面体体积。通过正交化向量,构建投影矩阵U,形成矩阵C,其行列式的平方即为格拉姆矩阵,表示原空间在正交化后的坐标的体积。外微分和多元微积分的概念被用来解释和建立两者之间的联系,同时展示了微分换元的过程,强调了在不同维度间转换的关键点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这一端文章没有写详细的证明。意思是说n维空间下的k个向量围成的多面体的体积,都可以用公式(3)进行计算。详细证明过程参考:行列式的一种推广 - 知乎 

这里简述下过程:

首先要把这n个m维向量进行格拉姆斯密特正交化,得到正交后的Umn.为什么会想到这个,因为对于坐标个数和实际空间维度不同的情况下,我们可以利用标架,想办法找到和坐标个数相同的维度,进而回到我们熟悉的n=m的情况下进行讨论。正交化后,我们知道转置和它的本身的乘积会得到n维的单位矩阵。(m>n)

这里熟悉线性代数的人肯定知道,UUT的乘积,表示V空间的投影矩阵,它的意思是把一个向量投影到U的列空间中,得到的值就是这个列空间下的坐标。这不就是我们想要的桥梁吗?继续看,我们把原本的向量用u来做线性组合,就会得到一组系数c.

 用c组成矩阵Cn,这也是一个n阶方阵,重点来了A=UC, C=UTA

那么格拉姆矩阵就是

这个结论就出来了。格拉姆矩阵是矩阵C行列式的平方,而矩阵C的列,就是原本空间在斯密特正交化后的空间下的坐标的体积。斯密特正交化和原本的体积是一样的,因为:

外微分的部分:

 这里很重要,首先x1,x2是Rn中的坐标,其实就是有这么多个未知数,求导相当于全微分,而后面的切向量则是我们之前的dx1,dx2....dxn.其实就是全微分公式。

核心来了,因为dx1=这个向量的坐标本身。这是微分下特有的性质,那么外微分就变成了:

 

 后面不正是这几个向量围成的多面体的体积吗?这似乎给了我们外微分和多元微积分建立了联系。

然后通过微分形式的坐标标记法:

可以推导出:

换成我们熟悉的微元:

 

这个公式仔细看,其实就是我们的求导啊。

接下来看一个很重要的例子:

这其实就是对于dx1dx2,要进行换元成dt1....dtm。因为个数不相同,是属于高难度的微分换元。

 首先,我们要在U里面找到两个向量,因为V中也只有两个向量,我们的维数肯定要一样,不然就不是同胚了。这里似乎和我们之前的做法都不太一样。我们之前往往是直接把雅克比矩阵写出来:

dxdy=det|J|dudv. 这里回到的是最原始的概念,U->V的映射是phi,那么他们切空间的映射就是phi的导数。其实这里用到了对偶空间的概念,对于线性映射作用在向量和它作用在坐标上,矩阵是转置的关系。这里我们要区分清楚。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yxriyin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值