在数字化时代,企业和组织积累了大量的常见问题(FAQ)文档,这些文档是宝贵的知识财富。然而,传统的问答方式难以快速、准确地从海量 FAQ 中提取有效答案。检索增强生成(Retrieval-Augmented Generation,RAG)技术的出现,为智能问答系统的搭建提供了新的解决方案。RAG 技术结合了检索和生成的优势,能够在海量知识库中精准检索相关信息,并通过生成模型生成自然流畅的答案,极大提升了问答系统的效率和准确性。
RAG 系统主要由检索模块和生成模块两部分组成。检索模块负责从 FAQ 知识库中筛选出与用户问题相关的文档或段落,这一过程通常基于向量检索技术,将用户问题和知识库中的文本转换为向量形式,通过计算向量之间的相似度来确定相关性。生成模块则基于检索到的相关信息,利用自然语言生成模型(如 Transformer 架构的语言模型)生成最终的答案。这种 “检索 - 生成” 的架构使得系统既能利用知识库中的准确信息,又能灵活生成符合人类语言习惯的回答。
关键技术点
- 向量表示:将文本转换为向量是 RAG 技术的基础。常用的方法包括基于词嵌入(如 Word2Vec、GloVe)和基于预训练语言模型(如 BERT、GPT 系列)的向量表示。预训练语言模型能够捕捉文本的语义信息,生成的向量更能反映文本的深层含义,因此在 RAG 系统中应用广泛。
- 相似度计算:在向量空间中,通过计算用户问题向量与知识库文本向量的相似度来筛选相关信息。常见的相似度度量方法有余弦相似度、欧氏距离等。余弦相似度由于计算简单且能有效衡量向量之间的方向相似性,在 RAG 系统中被普遍采用。
- 生成模型优化:为了生成更准确、流畅的答案,需要对生成模型进行优化。可以通过微调预训练模型,使用 FAQ 数据对模型进行有监督学习,使其更好地适应特定领域的问答任务;也可以结合强化学习,根据答案的质量反馈调整模型参数,提升生成效果。
技术架构设计
-
检索增强生成(RAG)核心模块