判断一个算子是否会导致shuffle的方法

本文详细解析了Apache Spark中RDD的distinct操作过程,通过对比parallelize创建的RDD与应用distinct后的RDD,展示了数据去重的实现机制。文章通过具体的代码示例,深入探讨了MapPartitionsRDD和ShuffledRDD在distinct操作中的角色,为读者提供了理解Spark内部工作原理的视角。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

scala> val a  = sc.parallelize(Array(1,2,3)).distinct
a: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[3] at distinct at <console>:24

scala> a.toDebugString
res0: String =
(16) MapPartitionsRDD[3] at distinct at <console>:24 []
 |   ShuffledRDD[2] at distinct at <console>:24 []
 +-(16) MapPartitionsRDD[1] at distinct at <console>:24 []
    |   ParallelCollectionRDD[0] at parallelize at <console>:24 []

scala> 

scala> 

scala> val b  = sc.parallelize(Array(1,2,3))
b: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at parallelize at <console>:24

scala> b.toDebugString
res1: String = (16) ParallelCollectionRDD[4] at parallelize at <console>:24 []

 


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值