can‘t import automodel from modelscope

直接pip install transformers,然后就能了。

### 如何使用 ModelScope 的 `AutoModelForCausalLM` 和 `AutoTokenizer` 在 ModelScope 中,可以利用 Hugging Face 提供的工具集来加载预训练的语言模型及其分词器。以下是具体方法: #### 1. 安装依赖项 为了能够顺利运行代码,需先安装必要的 Python 包: ```bash pip install transformers datasets torch ``` #### 2. 导入所需模块 导入用于加载模型和分词器的相关类: ```python from transformers import AutoTokenizer, AutoModelForCausalLM ``` #### 3. 配置模型路径 指定要使用的模型所在的位置或名称。如果模型存储于本地,则提供其绝对路径;如果是远程托管模型(例如来自 ModelScope 或 Hugging Face Hub),则可以直接输入对应的模型 ID。 对于本地模型: ```python model_path = r"D:\llama.cpp\models" gguf_file = "qwen2.5-0.5b-instruct-q3_k_m.gguf" tokenizer = AutoTokenizer.from_pretrained(model_path, gguf_file=gguf_file, clean_up_tokenization_spaces=True)[^1] model = AutoModelForCausalLM.from_pretrained(model_path, gguf_file=gguf_file)[^1] ``` 当从 ModelScope 下载模型时,通常会获得一个唯一的标识符作为模型 ID。假设此 ID 是 `"damo/qwen"`,那么可以通过如下方式加载它: ```python model_id = "damo/qwen" # 初始化分词器与模型实例 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) ``` #### 4. 输入处理 准备待预测的数据,并将其转换成适合传递给神经网络的形式——即 tokenized tensors。 ```python input_text = "你好,世界!" inputs = tokenizer(input_text, return_tensors="pt") # 'pt' 表示 PyTorch tensor 类型 ``` #### 5. 执行推理 调用模型完成前向传播计算过程,获取生成序列的结果。 ```python outputs = model.generate(**inputs) # 将 tokens 转回字符串形式 generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True) print(generated_texts) ``` 以上就是基于 ModelScope 平台上的资源实现因果语言建模任务的主要流程[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值