ROC曲线简明讲解

博客介绍了受试者工作特征曲线(ROC曲线),涉及混淆矩阵,说明了ROC曲线横纵坐标含义,横坐标为实际负例中被错误分为正例的比例,纵坐标为实际正例中被正确分为正例的比例。还介绍了绘制方式及如何通过曲线评估分类器好坏,曲线越靠近左上、曲线下方面积越大,分类器性能越好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

名称

受试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线),来源于雷达,历史不谈。

混淆矩阵

在这里插入图片描述

ROC曲线

在这里插入图片描述FP/(FP+TN)
横坐标 False Positive Rate(FPR),实际负例中,被错误地分为正例的比例:FPTN+FP\frac{FP}{TN+FP}TN+FPFP
纵坐标 True Positive Rate (TPR),实际正例中,被正确分为正例的比例:TPTP+FN\frac{TP}{TP+FN}TP+FNTP

另外再提两个跟P-R曲线相关的precision和recall,以免混淆,其中ROC曲线中的TPR就是recall。
precision=TPTP+FPprecision=\frac{TP}{TP+FP}precision=TP+FPTP
recall=TPTP+FNrecall=\frac{TP}{TP+FN}recall=TP+FNTP

解读

  • 绘制方式:将分类器的判定正负的阈值,从0到1不断变化,得到的分类器预测结果计算横纵坐标,最后绘制在图中,一定是一个从左下到右上的线。
  • 表征分类器好坏:曲线越靠近左上,越好。也就是Area Under Curve (AUC),曲线下方面积越大,分类器性能越好。
  • 二分类。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值