名称
受试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线),来源于雷达,历史不谈。
混淆矩阵
ROC曲线
FP/(FP+TN)
横坐标 False Positive Rate(FPR),实际负例中,被错误地分为正例的比例:FPTN+FP\frac{FP}{TN+FP}TN+FPFP
纵坐标 True Positive Rate (TPR),实际正例中,被正确分为正例的比例:TPTP+FN\frac{TP}{TP+FN}TP+FNTP
另外再提两个跟P-R曲线相关的precision和recall,以免混淆,其中ROC曲线中的TPR就是recall。
precision=TPTP+FPprecision=\frac{TP}{TP+FP}precision=TP+FPTP
recall=TPTP+FNrecall=\frac{TP}{TP+FN}recall=TP+FNTP
解读
- 绘制方式:将分类器的判定正负的阈值,从0到1不断变化,得到的分类器预测结果计算横纵坐标,最后绘制在图中,一定是一个从左下到右上的线。
- 表征分类器好坏:曲线越靠近左上,越好。也就是Area Under Curve (AUC),曲线下方面积越大,分类器性能越好。
- 二分类。