特征融合篇 | YOLOv8 应用 BiFPN 结构 | 《 EfficientDet: 可扩展和高效的目标检测》

本文探讨了目标检测中模型效率的重要性,提出加权双向特征金字塔网络(BiFPN)用于多尺度特征融合,优化了特征传播、调整和选择。BiFPN在EfficientDet系列中实现更高效率,且在COCO test-dev上达到55.1 AP,相比先前技术减小参数和FLOPs。论文和代码链接已提供。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
模型效率在计算机视觉中变得越来越重要。在本文中,我们系统地研究了目标检测中的神经网络架构设计选择,并提出了几种关键的优化方法来提高效率。首先,我们提出了一种加权双向特征金字塔网络(BiFPN),它可以实现简单快速的多尺度特征融合;其次,我们提出了一种复合缩放方法,同时对骨干网络、特征网络和框/类别预测网络进行分辨率、深度和宽度的均匀缩放。基于这些优化和更好的骨干网络,我们开发了一种新的目标检测器系列,称为EfficientDet,在广泛的资源限制范围内始终比之前的技术实现更高的效率。特别地,在单一模型和单一尺度下,我们的EfficientDet-D7在COCO test-dev上以77M参数和410B FLOPs的状态下达到了55.1 AP的最新水平,比之前的检测器小4倍到9倍,使用的FLOPs少13倍到42倍。

论文地址:https://arxiv.org/pdf/1911.09070.pdf

代码地址:https://github.com/google/automl/tree/master/efficientdet


### 实现 YOLOv8 BiFPN 的整合 在现代目标检测框架中,特征金字塔网络(Feature Pyramid Network, FPN)用于增强模型处理不同尺度物体的能力。传统 FPN 存在一个方向的信息流动局限性,这被 PANet 解决了一部分,但是仍然存在改进空间。为了进一步提升性能并克服上述限制,在 YOLOv8 中引入了双向特征金字塔网络(Bidirectional Feature Pyramid Networks, BiFPN),该结构不仅实现了高效的双向跨尺度连接还采用了加权特征图融合机制[^1]。 #### 修改配置文件 要将 BiFPN 整合到 YOLOv8 架构中,首先需要编辑相应的配置文件以定义新的颈部模块: ```yaml neck: type: 'BiFPN' num_repeats: 3 # 堆叠层数量可以根据需求调整 channels_list: [64, 128, 256, 512, 1024] ``` 这段 YAML 片段指定了使用 `BiFPN` 类型作为颈部组件,并设置了重复次数以及每层通道数列表。这些参数应根据具体应用场景个人硬件条件适当调节。 #### 编写自定义 Neck 模块 接下来就是编写具体的 Python 代码实现这个新型颈模块的功能逻辑。下面给出一个简化版的例子说明如何创建这样一个类: ```python import torch.nn as nn class BiFPN(nn.Module): def __init__(self, num_channels=256, epsilon=1e-4): super(BiFPN, self).__init__() # 初始化必要的卷积操作其他设置... def forward(self, inputs): """ :param inputs: list of tensors representing feature maps at different levels. The order should be from the lowest level (highest resolution) to highest level (lowest resolution). :return: A new set of enhanced multi-scale features after applying bidirectional connections and weighted fusion. """ # Implementing top-down path augmentation here... # Implement bottom-up connection with weighted sum for each node... return outputs ``` 此代码片段展示了构建 `BiFPN` 类的基础框架,其中包含了前向传播函数的签名及其输入输出描述。实际开发时还需要补充更多细节,比如具体的卷积层设计、激活函数的选择等。 #### 调整训练流程 最后一步是在整个项目里适配新加入的部件。确保数据预处理阶段能够提供适合多尺度分析的图像尺寸;更新损失计算方式以便更好地适应改进后的特征提取过程;监控验证集上的表现指标变化趋势来评估优化效果。
评论 59
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值