单源最短路径——Dijkstra代码实现

本文介绍了一种用于解决单源最短路径问题的经典算法——Dijkstra算法,并提供了完整的模板代码实现。该算法适用于边权非负的情况,通过不断选择未访问顶点中距离最短的一个进行扩展,逐步求得所有顶点的最短路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

单源最短路 Dijkstra算法 从起点到其他顶点的最短距离 边权非负

模板代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXV = 1000;  //最大顶点数
const int INF = 0x3fffffff; //设一个很大的数
int n,m,s,G[MAXV][MAXV]; //顶点数、边数、起点、保存图
int d[MAXV];  //起点到各个点的最短距离 也就是最终结果
bool vis[MAXV] = {false}; //标记是否访问 访问了变为true
void Dijkstra(int s){ //s为起点
	fill(d,d+MAXV,INF); //初始化全为最大值
	d[s] = 0; //到自己距离为0
	for(int i=0;i<n;i++){
		int u = -1, MIN = INF;
		for(int j=0;j<n;j++){
			if(vis[j] == false && d[j] < MIN){ //从没被访问的挑一个距离最小值
				u = j;
				MIN = d[j];
			}  
		}
		//找不到则说明剩下的顶点和s都连通了
		if(u == -1) return;
		vis[u] = true; //标记为访问了
		for(int v=0;v<n;v++){
			if(vis[v] == false && G[u][v] != INF && d[u]+G[u][v]<d[v]){
				d[v] = d[u] + G[u][v];
			}
		}
	}
}
int main(){
	int u,v,w;
	scanf("%d%d%d",&n,&m,&s);
	fill(G[0],G[0]+MAXV*MAXV,INF);
	for(int i=0;i<m;i++){
		scanf("%d%d%d",&u,&v,&w);
		G[u][v] = w;
	}
	Dijkstra(s);
	for(int i=0;i<n;i++)
		printf("%d ",d[i]);
	return 0;
}

离字典,将起始节点的距离设为0,其他节点的距离设为无穷大 distances = {node: sys.maxsize for node in graph} distances[start] = 0 # 初始化已访问节点的集合和未访以下是使用问节点D的集ijkstra合 visited = set() unvisited算法求解最短路径的Python = set(graph) while unvisited: # 代码示例: ```python class D选择当前ijkstra距: def __init__(self, graph离最小的节点 , start, current goal): self.graph = graph # 邻接表_node = min(unvisited, key=lambda self node: distances[node]) # 更新.start = start当前节点的 # 起邻居节点点 self.goal =的距离 goal # 终点 for neighbor in graph self.open[current_node]: _list = {} if neighbor in # open 表 self.closed_list unvisited: new_distance = distances[current_node] + = {} graph[current_node][neighbor # closed 表 self.open_list[start] if new_distance] = < distances[neighbor]: 0.0 # 将 distances[neighbor] = new_distance # 将当前起点放入 open_list 中 self.parent = {节点标记start:为已访 None} 问,并从未访问集合中移除 visited.add # 存储节点的父子关系。键为(current_node) 子节点, unvisited值为父.remove(current_node) return节点。方便做最 distances def print后_path(dist路径的ances,回 start溯 self.min, end): _dis = None # 根 # 最短路径的长度 def shortest_path据距离字典和终点节点(self): while True: ,逆向 if self打印路径.open_list is path = [end None: ] print('搜索 current_node =失败 end while current_node !=, 结束!') break distance start: , min_node = for neighbor in graph min(zip[current_node]: if(self.open_list distances[current.values(), self_node] ==.open_list.keys distances[neighbor())) #] + graph 取出距[neighbor][current_node]: 离最小的节点 self path.open_list.pop.append(min_node)(neighbor) current_node = neighbor break path.reverse() # 将其从 open_list 中去除 self print.closed("_list[minShortest_node] = path from", distance # 将节点加入 closed start, "to", end,_list ":", "->".join(path)) # 示例 中 if min_node == self.goal: # 如果节点为图的邻接矩阵终点 self.min_dis = distance 表示 graph shortest = { _path = [ 'Aself.goal]': {'B': # 5, 'C 记录从': 终1}, 点回溯的路径 'B
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是一只派大鑫

一块两块不嫌少,三块四块不嫌多

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值