自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

许泽宇的技术分享

微软最有价值专家(Al Platform MVP),华为云开发者专家(HCDE),NebulaGraph认证专家,Neo4j认证专家,上市公司首席架构师,211研究生在读,专注.Net 和AI相关技术,内容涵盖教程、技巧、行业动态及解决方案

  • 博客(307)
  • 资源 (4)
  • 收藏
  • 关注

原创 把AI塞进浏览器里还要跑得快:一文吃透 Chrome MCP Server 的「原生 × 扩展 × 向量」三栈合璧术

大模型的强项在“理解与生成”,浏览器的强项在“访问与操作”。把两者连起来,就有了超强的“读网页、理解内容、下指令、回结果”的闭环。但直连浏览器有几个痛点:安全边界:浏览器扩展需要权限隔离;性能瓶颈:AI 推理本地化后,不能阻塞 UI,更不能拖慢整机;上下文复用:同一模型、同一页面、同一任务,如何降低重复成本;生态兼容:如何用统一的“工具调用”协议连接各种 AI 客户端(比如 Claude Desktop)。

2025-08-22 16:17:34 606

原创 AI推理革命:从Sequential Thinking到Agentic AI的演进之路——揭秘大语言模型思维进化的四重奏

想象一下,当你在解决一个复杂的数学题时,你不会直接给出答案,而是会在草稿纸上一步步地推导。这就是序列化思维的本质——将复杂问题分解为一系列有序的步骤。在传统的大语言模型中,AI往往像一个"直觉型天才",能够直接给出答案,但却无法解释推理过程。这就像一个学生告诉你"答案是42",但却说不出为什么是42一样。Sequential Thinking的出现,让AI开始学会"慢思考"。# 传统模式:直接回答return model.generate(question) # 直接输出最终答案。

2025-08-22 13:39:56 536

原创 Text2SQL优化神话破解:从“能用“到“好用“的完美蜕变之路

大模型时代的Text2SQL技术:让自然语言与数据库完美对话 Text2SQL技术通过将自然语言查询转换为SQL语句,实现了人与数据库的无缝交互。其发展经历了三个阶段: 规则引擎时代:依赖模板匹配,灵活性差 深度学习革命:Seq2Seq模型提升了语义理解能力 大模型飞跃:GPT-4等LLM展现出强大的上下文学习和推理能力 核心优化技术包括: 智能Schema Linking:通过语义嵌入和图神经网络精准映射查询到数据库结构 Prompt工程:采用few-shot学习和链式思考(CoT)提升生成质量 执行反馈

2025-08-21 10:49:16 717

原创 RAG优化技巧深度解析:从入门到精通的实战指南

本文深入探讨检索增强生成(RAG)技术的优化策略,从基础架构到高级应用全面解析。文章首先剖析RAG的五大核心流程和常见挑战,重点讲解文本分块策略(固定分块、语义分块、递归分块)的实现与优化。随后详细阐述多查询检索、混合检索等检索优化技巧,以及RAGAS评估框架和自定义指标。在工程实践方面,涵盖向量数据库选择、Embedding模型微调、缓存策略和异步处理等优化方案,并辅以企业知识库和法律检索等典型应用案例。最后展望多模态RAG、Agent化等未来发展趋势,提供包含常见陷阱和检查清单的最佳实践指南。全文系统性

2025-08-21 10:34:08 499

原创 ReAct Agent:让AI像人类一样思考与行动的革命性框架

AI摘要:ReAct框架——让AI从被动响应到主动思考的革命 ReAct(Reasoning and Acting)框架通过模拟人类"思考-行动-观察"的认知循环,赋予大语言模型主动推理和与环境交互的能力。其核心架构包含思维链、推理模块、行动模块和观察模块四大组件,支持动态规划、工具调用和实时反馈。相比传统LLM,ReAct具有可解释性强、工具集成灵活、能处理复杂任务等优势,已在客服、数据分析、教育辅导等领域展现价值。尽管存在计算成本高、工具依赖等挑战,但随着多模态整合、自适应学习等技术

2025-08-20 21:37:17 1303

原创 HyDE vs HyPE:AI检索界的‘假想敌’革命,如何让RAG系统从‘找资料’变成‘懂你心’?”

AI检索技术迎来"假想革命":HyDE与HyPE让RAG系统更懂你 传统RAG系统的向量召回存在语义理解局限,常出现答非所问的情况。HyDE(假想文档嵌入)和HyPE(假想提示嵌入)两大创新技术通过"先脑补再检索"的方式突破这一瓶颈:HyDE让AI先生成假想答案再进行检索,适合开放性问题;HyPE则为文档块生成假想问题作为检索代理,实现多角度语义匹配。测试显示,这两种方法能显著提升检索相关性,尤其是HyPE在复杂知识库检索中表现更优。这些技术标志着AI检索正从机械比对

2025-08-20 17:36:14 753

原创 从SEO到GEO:生成式搜索时代的技术革命

摘要:生成式引擎优化(GEO)正在取代传统SEO,成为AI时代的新兴优化领域。GEO通过提升内容在AI回答中的可见度,而非仅关注网页排名,涉及数据权威性、知识结构优化等技术层面。研究表明,采用结构化数据标记、语义优化等策略可实现40%的可见度提升。GEO正重塑电商格局,推动API化服务模式。未来将向多模态、实时优化方向发展。建议内容创作者立即实践GEO策略,提升数据质量和结构化程度。GEO代表了信息检索和数字营销的根本变革,掌握这一技术将成为AI时代的竞争优势。

2025-08-19 21:30:15 1009

原创 爆改AI代理开发!LangGraph全揭秘:从入门到实战,打造持久、可控、可插拔的智能体系统

摘要: LangGraph是一款专为解决AI代理开发痛点而设计的低门槛、高自由度编排工具,支持持久化记忆、多智能体协作和人机交互。它采用状态机范式,允许开发者灵活定义节点与流程,并集成检查点机制确保断点恢复。LangGraph已成功应用于Klarna、Replit等企业的复杂场景,如金融客服、编程助手等。未来,它将推动AgenticAI向分布式、自愈方向发展,成为AI代理开发的“新基建”。开发者可通过简单代码快速构建智能体,实现多轮对话、工具调用等功能,开启AI创新无限可能。

2025-08-19 17:58:26 777

原创 爆改AI智能体!LangGraph ReAct Agent全解析:从原理到实战,带你玩转下一代AI工作流

AI智能体进化与LangGraphReActAgent技术解析 AI智能体正从传统问答模式升级为具备"推理-行动"能力的自主系统。LangGraphReActAgent通过有向图架构实现智能体工作流,其核心包含四大模块: 上下文配置:定义模型选择与行为准则 状态管理:记录对话历史与执行状态 工具集成:支持搜索/API等扩展功能 流程编排:通过节点(推理/行动)和边构建决策循环 典型应用场景如学术研究助手,可自动完成"搜索-筛选-输出"全流程。未来智能体将向多模态协作、

2025-08-19 17:49:33 961

原创 Windows桌面自动化的革命性突破:深度解析Windows-MCP.Net Desktop模块的技术奥秘

Windows-MCP.NetDesktop模块是一个基于C#开发的桌面自动化工具,通过分层架构设计实现鼠标、键盘、窗口等桌面操作的智能化控制。该模块集成了18个专业化工具类,支持点击、拖拽、文本输入、窗口管理等核心功能,并采用异步编程模式提升性能。其创新之处在于将MCP协议与Windows API深度整合,为AI代理提供标准化桌面操作接口。项目具有开源特性,支持功能扩展和跨平台适配,能显著提升办公自动化、数据采集等场景的效率。未来将深化AI集成,增强视觉理解和自然语言交互能力,推动桌面自动化技术向智能化方

2025-08-18 15:16:30 908

原创 从零到一构建企业级GraphRAG系统:GraphRag.Net深度技术解析

GraphRag.Net是一个基于.NET技术栈的开源项目,将知识图谱技术与大语言模型结合,构建企业级GraphRAG解决方案。核心创新包括:1)LLM驱动的智能实体关系提取与知识图谱构建;2)快速标签传播算法实现的社区检测;3)向量搜索与图遍历结合的多层次检索策略;4)节点权重传播与Token优化机制。项目采用分层架构设计,支持多租户,提供从节点到全局的三层摘要体系。相比传统RAG,它能理解实体间的复杂关系网络,解决"信息孤岛"问题,在知识管理、法律分析等场景表现优异。项目已实现性能优

2025-08-18 14:54:21 449

原创 Text2Sql.Net:让数据库查询变得像聊天一样简单!从自然语言到SQL的智能转换之旅

摘要: Text2Sql.Net是一个基于.NET平台的智能数据查询工具,通过自然语言处理技术将用户需求自动转化为SQL查询。该项目采用分层架构设计,集成大型语言模型(LLM)和向量搜索技术,支持多数据库适配与安全机制,显著降低数据库查询门槛。核心功能包括智能SQL生成、错误恢复和多层安全防护,适用于企业分析、教育培训等场景。未来将扩展多模态支持和智能化分析能力,推动AI时代的数据交互革新。项目开源地址:https://github.com/AIDotNet/Text2Sql.Net

2025-08-17 20:58:44 671

原创 AntSK-PyAPI技术深度解析:打造企业级文本嵌入向量服务的完整指南

本文深入解析了基于FastAPI和FlagEmbedding的高性能文本嵌入向量服务项目AntSK-PyAPI,从架构设计到实战应用全面展示了企业级向量服务的实现方案。项目采用现代化微服务设计,集成了智能模型缓存、批量处理、多格式支持等核心功能,并提供了完善的容器化部署方案。文章重点剖析了项目的三级模型缓存机制、异步高并发处理、安全防护设计等关键技术实现,同时探讨了在智能客服、内容推荐等场景的具体应用。通过分析项目的技术栈选择、性能优化策略和开源价值,为开发者构建专业向量服务提供了系统性的工程实践参考,展现

2025-08-17 20:21:25 822

原创 Windows MCP.Net:基于.NET的Windows桌面自动化MCP服务器深度解析

Windows-MCP.Net是基于.NET 10.0开发的Windows桌面自动化服务器,采用MCP协议为AI助手提供与Windows系统交互的能力。项目采用分层架构设计,包含协议通信层、工具实现层、业务服务层、接口定义层和系统API层五大模块,实现桌面操作、文件系统管理、OCR识别和系统控制等功能。关键技术包括Windows API集成、异步编程模式、依赖注入和缓存策略等。该项目支持多种实际应用场景,如自动化办公、批量文件处理和系统监控等,并具备良好的扩展性,开发者可轻松添加新功能模块。未来将增强AI集

2025-08-16 20:11:09 1099

原创 Windows MCP.Net:革命性的 .NET Windows 桌面自动化 MCP 服务器

WindowsMCP.Net:基于.NET10的AI桌面自动化解决方案 WindowsMCP.Net是一个创新的开源项目,通过ModelContextProtocol(MCP)实现了AI助手与Windows系统的深度集成。该项目基于最新.NET10技术栈,提供完整的桌面自动化能力,包括鼠标键盘控制、窗口管理、OCR识别和网页抓取等功能。 核心特性: 模块化分层架构设计,确保系统可扩展性 支持精确的鼠标键盘操作和屏幕内容识别 内置网页内容抓取和Markdown转换工具 完善的异常处理和日志记录机制 应用场景包

2025-08-16 19:59:58 1117

原创 当AI遇上OCR:Windows MCP.Net如何让机器“看懂“屏幕上的每一个字

摘要:WindowsMCP.Net项目通过集成PaddleOCR引擎打造高效OCR模块,采用三层架构设计(工具层、服务层、接口层),实现屏幕文字识别、区域提取、文本搜索等功能。该系统支持多语言识别,通过单例模式优化性能,结合Windows API实现高效截图,并具备完善的异常处理和日志机制。相比传统OCR方案,在中文识别准确率和商业友好度方面表现突出。未来规划包括多模态融合、实时性提升和跨平台支持,为自动化测试、数据录入等场景提供智能解决方案,展现了OCR技术在提升人机交互体验方面的强大潜力。

2025-08-15 23:17:23 1026

原创 当AI遇上Windows桌面:Windows-MCP.Net项目深度解析——让AI助手拥有“手眼并用“的超能力

在这个AI技术飞速发展的时代,我们很容易被各种炫酷的技术概念所吸引,但真正有价值的技术应该是有"温度"的——它能够解决实际问题,提升人们的生活质量,让复杂的事情变得简单。Windows-MCP.Net正是这样一个有温度的项目。它不是为了炫技而存在,而是为了让AI助手真正成为我们工作和生活中的得力助手。当你看到AI助手能够自动整理桌面文件、批量处理图片、或者帮你完成重复性的办公任务时,你会感受到技术带来的真实价值。

2025-08-15 15:50:34 874

原创 “让AI动起来!”——首款Windows系统MCP自动化引擎爆火开源,颠覆你的智能桌面体验!

《Windows-MCP.Net:让AI真正操控桌面的革命性工具》摘要 Windows-MCP.Net是一款基于MCP协议的开源AI自动化工具,通过.NET10框架实现Windows系统的深度控制。不同于传统AI仅能处理文本交互,这款工具赋予AI"手脚"能力,可执行启动应用、文件操作、窗口管理、网页抓取等20+系统级任务。其技术核心在于将AI指令转化为WindowsAPI调用,支持鼠标键盘模拟、OCR识别等功能,实现从"会说话"到"会操作"的质变。

2025-08-15 00:44:31 815

原创 机器学习工程的超级助手正在觉醒:深度解析全球最强AI多智能体R&D-Agent,一举颠覆自动化数据科学研发的未来!

微软推出革命性R&D-Agent,通过多智能体协作实现自动化科研全流程。该系统在MLE-bench测评中表现优异,能自动完成从数据预处理到模型优化的完整机器学习工程,在量化金融、医疗建模等场景已成功落地。其核心技术在于"研究-开发"双智能体协同机制,支持自我进化和知识积累。相比传统AutoML,R&D-Agent更具创造力和适应性,有望成为各行业的"AI同事"。目前系统已开源,支持快速部署,或将彻底改变科研和工程研发模式。

2025-08-14 11:37:46 897

原创 “金融数据的ChatGPT来了?!OpenBB深度揭秘:用AI和开源颠覆华尔街的数据壁垒!”

《OpenBB:开源金融科技的颠覆者》 摘要:OpenBB作为首个完全开源的金融数据平台,正在打破传统金融信息壁垒。它通过模块化设计实现股票、加密货币、外汇等全资产类别的数据整合,仅需一行Python代码即可调用专业级金融数据。平台采用多接口协同架构,支持命令行、API和Web端无缝切换,并内置AI智能分析功能。其开源生态允许全球开发者共同扩展数据源和功能插件,大幅降低金融科技准入门槛。OpenBB的标准化数据结构为AI金融应用提供了理想基础,有望推动"全民智能投资"时代的到来。但平台也

2025-08-14 11:34:41 1150

原创 爆改LangChain评估体系!一文摸透AI答案“对不对”的真相与未来趋势

AI告别"一本正经胡说八道"?LangChain评估体系让大模型学会自我打分!本文揭秘AI评测的三大核心指标:Correctness(正确性)检查答案准确性,Faithfulness(忠实度)验证依据来源,Relevancy(相关性)评估内容匹配度。通过代码拆解和真实案例,展示如何让AI从"自嗨"转向可靠输出。文章还探讨了AI评测的最新趋势和未来可能,包括多模态评估和自主学习式评测。无论是开发者还是普通用户,都能从中了解如何让AI回答更可信、更实用。

2025-08-13 14:46:16 904

原创 爆改检索体验!RAG三大核心 Query Transformation 技术实战解析与深度思考:你的AI能“聪明问”,才能“聪明答”!

本文探讨了检索增强生成(RAG)系统中的关键技术——查询变换(Query Transformations),指出AI回答质量很大程度上取决于提问方式。文章解析了三种核心方法:查询重写(Query Rewrite)通过补充细节提升检索精准度;升维提问(Step-back Query)将具体问题扩展为宏观背景;子问题拆解(Sub-query Decomposition)将复杂问题拆分处理。通过代码示例展示了如何用大语言模型实现这些技术,并列举了企业知识库、学术研究等应用场景。文章强调,在RAG系统中,&quot

2025-08-13 14:43:36 704

原创 “让AI秒变前端工程师?一键对话式生成React应用,这个开源项目太‘Lovable’了!”

OpenLovable:AI驱动的前端开发新范式 OpenLovable是一款革命性的AI前端开发工具,通过对话式交互实现React应用的全栈生成与实时修改。其核心技术突破在于: 采用多模型集成架构(支持GPT、Claude等),结合智能对话状态管理,实现精准的增量代码修改 引入E2B安全沙箱环境,支持代码实时预览与自动依赖安装 集成Firecrawl网站克隆功能,可一键复制目标网站结构与样式 具备完整的项目进化溯源能力,支持多轮对话迭代开发 该工具已实现从登录表单到完整网站克隆的生产级应用案例,显著提升了

2025-08-13 14:24:14 1502

原创 “生成式UI革命”:Tambo AI如何让你的应用“开口说话、动手搭界面” | 全面深剖、案例实践与未来展望

《TamboAI:大模型与React组件的生成式UI革命》 TamboAI是一个开创性的开发套件,让大语言模型(LLM)能够直接编排React组件,实现"生成式UI"能力。通过组件注册机制和精准的propsSchema定义,开发者可以赋予AI动态构建交互界面的能力,用户只需用自然语言就能驱动界面生成。核心技术包括: 组件注册机制:为AI提供可调用的UI组件库 LLM编舞能力:模型直接下达组件调用指令 动态Hooks:实现组件与AI的实时交互 工具扩展机制:为AI增加外部API调用能力 T

2025-08-12 23:56:23 664

原创 爆改你的AI生产力栈!一文搞懂MCP协议与终极客户端生态全景 | 技术流带你冲击下一代 AI 工作流

MCP协议:开启AI大模型落地新纪元 MCP(ModelContextProtocol)是连接AI模型与本地/远程资源的标准化协议,被誉为"AI界的TCP/IP"。该协议通过标准化接口、安全权限控制和生态协作机制,让AI模型能够安全灵活地调用各类资源,实现从"智能问答"到"实际做事"的范式升级。当前MCP生态已涵盖桌面应用、IDE插件、命令行工具等多样化客户端,支持办公自动化、代码开发、数据分析等场景。其核心优势在于开放标准、安全可控的技术架构,以

2025-08-12 23:53:41 1083

原创 「让AI大脑直连Windows桌面」:深度解析Windows-MCP,开启操作系统下一代智能交互

Windows-MCP:让AI真正操控Windows桌面的开源黑科技 Windows-MCP是一款创新的开源中间件,它通过系统原生API和辅助功能树,让AI大模型能够直接操作Windows桌面系统,实现点击、输入、窗口管理等真实交互。不同于依赖屏幕识别的传统方案,MCP提供了Click-Tool、Type-Tool等丰富工具包,支持主流LLM无缝接入,使AI从"智囊团"升级为"IT助理"。该技术已在自动化测试、文件整理等场景展现出显著优势,具备开源、兼容性好、响应快等

2025-08-12 23:50:00 1116

原创 构建属于你的AI Agents帝国:零代码可视化,Flowise三大神器揭秘!

《Flowise:零代码构建AI助手的可视化神器》 Flowise作为新一代开源AI平台,正在彻底改变AIAgent开发模式。通过三大核心组件(Assistant、Chatflow、Agentflow),用户无需编码即可拖拽搭建智能系统:从简单问答助手到复杂多Agent协作系统,都能通过可视化界面快速实现。平台支持RAG增强、多模型集成和第三方API扩展,提供从个人知识管理到企业级客服解决方案的全场景支持。部署方式灵活多样(NodeJS/Docker/开发模式),支持性能优化和团队协作。随着AI技术平民化趋

2025-08-08 18:23:15 902 1

原创 极简却超强:深入解析LangGraph中的ReAct Agent模板,助你打造能“思考-行动”的AI新物种!

还记得我们对AI的美好幻想吗?它不仅要答得出题,还得能上网查证、写代码、找信息,最好还能“像人一样”一步一步把难题解决——既能推理又会实际操作。2025年,这一幻想终于成真。而LangGraph中超火的ReAct Agent模板,正是实现这一转变的催化剂。今天,我们就来一本正经地拆解一下这个模板,看看它为AI世界开启了哪些新大门。别眨眼,这将是一篇涵盖技术底蕴、实战案例、未来趋势、幽默小彩蛋的大部头爆款文章!无论你是资深开发者还是AI爱好者,都能在这里找到“知识爽点”。

2025-08-08 18:17:04 738

原创 【硬刚70%架构师的痛点!】手把手教你在Azure上部署企业级GraphRAG——全流程实战、深度揭秘与避坑指南

你曾在哪一步部署AI迷路?GraphRAG这类RAG场景还有哪些值得开箱玩法?你对未来大模型云部署的最大痛点和想象是什么?欢迎在评论区大胆交流问题、分享奇葩踩坑、吐槽云平台or技术演进!你的每一个声音,都是推动技术进步的动力——下期“你问我答”,我将精选留言深度解答!【本号专注解构AI落地一线经验,想看什么深度话题或者哪块具体落地细节,也请留言!持续更新,不迷路~】更多AIGC文章。

2025-08-07 13:57:01 1399

原创 一键连接全球AI大脑,从此玩转LLM!——全揭秘终极“语言模型命令行神器”LLM的极致生产力

LLM是什么?它是为开发者、重度AI玩家、Prompt工程师量身定制的“多模型终极控制器、生产力和管理工具”,以命令行和Python库形式存在。它让你:用一行指令直接和OpenAI、Anthropic Claude、Google Gemini、Meta Llama,以及越来越多的新兴大模型(远程API、本地服务)无缝沟通。插件体系支持本地模型(如Ollama、GPT4All),满足隐私、本地化、安全合规需求。Prompt和模型响应全部自动入库(SQLite),方便全文检索、回溯复用。

2025-08-07 13:46:02 840

原创 再见SQL发际线!一文搞懂Text2SQL与Transformer解密:自然语言到SQL的AI究竟怎么玩

看到这里,是不是已经跃跃欲试、脑洞大开?你是否有过“忘记怎么Join”或者“光看数据库结构就脑壳疼”的时刻?有没有“AI帮我写出来还真对了”的奇迹体验?你在哪一刻最想让AI帮你写SQL?你觉得Text2SQL未来是不是会干掉DBA?说说你在SQL写作中遇到的最“变态”场景?👇评论区交朋友,转发分享给同样苦于SQL的伙伴们,一起保卫我们的发际线吧!喜欢这类AI底层分享?关注本号,让我们用幽默与技术解锁更多AI前沿!🌟更多Text2Sql文章。

2025-08-06 21:29:21 826

原创 开源“王炸”,只需16G显存!gpt-oss横空出世,一文读懂Agent新时代的颠覆性AI巨作

OpenAI重磅开源GPT-OSS模型,开启AI代理新时代。这款采用MoE架构的模型系列包含120B和20B两个版本,不仅支持128k超长上下文,更以Apache-2.0许可证实现真正开源。实测显示,其在编程、医疗、数学推理等领域的表现媲美顶级专有模型。作为首个"为Agent而生"的开源模型,GPT-OSS大幅降低了AI代理开发门槛,支持函数调用、工具接入等核心功能。从企业办公到医疗健康,从程序开发到垂直行业,GPT-OSS将加速AI代理在各领域的落地应用。这不仅改变了开源生态格局,更可

2025-08-06 11:03:40 1334

原创 爆炸性RAG黑科技!Self-RAG自适应检索增强生成系统揭秘:让AI回答更靠谱、更聪明、更像人

近几年生成式AI火得不行,ChatGPT横扫江湖、Sora震撼眼球,可你有没有发现:用多了之后AI的“胡说八道”(hallucination)问题越来越让人头痛?要么“掰”得一本正经却牛头不对马嘴,要么查资料靠生成,结果写出来还是“夹生饭”——要权威不够权威,要创新缺乏深度。业界一度把“检索增强生成”(Retrieval-Augmented Generation, RAG)奉为新一代避坑法宝,但RAG你用得爽么?许多RAG系统答案又臭又长、毫不相关,还不如小红书搜索。

2025-08-05 15:21:06 774

原创 让AI回答更“聪明精准”?你必须认识“命题切块”技术!(附实测详解、RAG新范式解析)

【摘要】"命题切块"技术正在革新AI信息检索范式,通过将文档分解为原子级事实单元(如"瓦特发明蒸汽机"),实现精准问答。相比传统段落检索,该系统具有原子性、自含性、精确性三大优势,使AI回答从"写作文"变为"填表格"。技术实现包含文档切分、LLM命题生成、质量校验等步骤,实测显示在精准问答场景中效率提升显著,尤其适合法律、教育等需快速获取明确答案的领域。该技术代表了AI知识管理从"量"到"质&quo

2025-08-05 15:02:20 1007

原创 「碎片拼接术」:用上下文补全窗口把 RAG 检索从“迷你块”升级为“整幅画”!

【摘要】本文提出"上下文补全窗口"技术解决RAG系统中信息碎片化问题。当向量检索只能返回400字符片段时,通过自动抓取命中chunk的左右邻居块,拼接成连贯上下文,既保持检索精度又提升回答完整性。文章详细展示了技术原理(2.1节)、代码实现(3.3节)及量化评估(4.2节显示Faithfulness达0.97),并对比传统方案(1.2节)。该技术兼容现有RAG架构,能以邻居数动态调节上下文范围,在ClimateChange报告测试中实现精准引用(5节)。文末提供开源代码并探讨与多模态等前

2025-08-04 16:05:56 696

原创 别再把 CSV 当“表格渣男”了!——用 200 行代码做出会聊天的客户信息助理,顺手拿下 RAG 核心原理、实战与未来趋势

摘要:本文探讨如何利用RAG(检索增强生成)技术将CSV文件转化为智能问答系统,实现"会聊天的客户资料专家"。文章对比了LangChain和LlamaIndex两种实现方案,详细解析了从数据分块、向量化到检索回答的全流程,并指出7个常见业务痛点及解决方案。该技术可应用于客服FAQ、财务对账等场景,通过结构化数据提升10倍查询效率。最后讨论了性能优化、安全加固及未来多模态发展趋势,强调垂直领域RAG在业务场景中的实用价值。

2025-08-04 16:01:01 714

原创 用“拖拽”征服大模型:从零到一打造 AI Agent,Flowise 超深度实战指南

写代码累?那就拖动方块吧!——某位前端同学的心声”如果说 2023 年是大模型狂飙的元年,那 2025 年一定是的爆发点。但凡写过 Prompt、拼过 LangChain、熬过 RAG 管线的朋友肯定想过一个问题:Flowise 给的答案是——“有,而且开源!

2025-08-03 21:26:27 1131

原创 一文读懂“多模态 RAG + 图像描述”从原理到落地

多模态RAG技术突破传统局限,实现图文并茂的智能检索。相比纯文本RAG,多模态版本通过视觉模型自动生成图片描述,将图像信息转化为可检索文本,在涉及图表、流程等场景下准确率提升12%-28%。技术栈覆盖PDF解析、图像描述生成、向量存储等模块,支持灵活替换不同模型。实验显示,在回答论文数据、模型结构等问题时,多模态RAG实现100%准确率,显著优于传统方案。该技术特别适用于法律合规、制造业BOM管理、医疗报告等场景,解决了关键信息仅存于图片的痛点。文章还提供了工程落地常见问题解决方案,并展望了知识粒子化和Ag

2025-08-03 21:12:04 863

原创 【AI信息抽取神器掘金秘籍】用LangExtract把“文本矿山”变黄金——专业解析、应用进阶与未来畅想

通过少量高质量的示例(few-shot)+自定义字段规则,无论模型有多会发散,结果只认规范,不认情怀。这让团队大规模处理任务时始终如一,脱离“模型心情”摆布。制定Prompt,严谨描述规则(如连续性、非重叠、原文摘录等)。精心准备few-shot示例,带上各类边界场景,规避歧义。比如,分析《罗密欧与朱丽叶》文本,“按出现顺序识别人物、情感、关系”,每个抽取都给出指标属性(如情感状态、修辞用法)。

2025-08-02 22:39:04 1976

原创 【AI多面手还是专家联盟?】揭秘Claude Code“Subagents”:极致AI开发效率的秘密武器

摘要: ClaudeCode推出50位专业子代理(Subagents)体系,颠覆传统“全能AI”模式,通过领域专家分工协作提升开发、运维及AI工程效率。子代理覆盖前后端开发、数据分析、云架构、安全审计等场景,支持自动分派、模型分级调度(Haiku/Sonnet/Opus)与多角色流程编排。实际案例显示,全栈开发、故障响应等任务效率提升60%以上。未来,多智能体协作将成主流,人类可专注战略决策,AI团队负责高效执行。需注意上下文传递、安全可控等挑战,合理搭配子代理以实现最优性价比。

2025-08-02 12:22:04 804

AntSK0.6.5 一件部署包,可以快速实现本地RAG知识库

AntSK功能介绍 基于.Net9+AntBlazor+SemanticKernel 打造的AI知识库/智能体 核心功能 语义内核 (Semantic Kernel):采用领先的自然语言处理技术,准确理解、处理和响应复杂的语义查询,为用户提供精确的信息检索和推荐服务。 内存内核 (Kernel Memory):具备持续学习和存储知识点的能力,AntSK 拥有长期记忆功能,累积经验,提供更个性化的交互体验。 知识库:通过文档(Word、PDF、Excel、Txt、Markdown、Json、PPT)等形式导入知识库,可以进行知识库问答。 GPTs 生成:此平台支持创建个性化的GPT模型,尝试构建您自己的GPT模型。 API接口发布:将内部功能以API的形式对外提供,便于开发者将AntSK 集成进其他应用,增强应用智慧。 API插件系统:开放式API插件系统,允许第三方开发者或服务商轻松将其服务集成到AntSK,不断增强应用功能。 .Net插件系统:开放式dll插件系统,允许第三方开发者或服务商轻松将其业务功能通过标准格式的代码生成dll后集成到AntSK,不断增强应用功能。

2025-06-22

AntSK0.6.2 一件部署包,可以快速实现本地RAG知识库

AntSK功能介绍 基于.Net8+AntBlazor+SemanticKernel 打造的AI知识库/智能体 核心功能 语义内核 (Semantic Kernel):采用领先的自然语言处理技术,准确理解、处理和响应复杂的语义查询,为用户提供精确的信息检索和推荐服务。 内存内核 (Kernel Memory):具备持续学习和存储知识点的能力,AntSK 拥有长期记忆功能,累积经验,提供更个性化的交互体验。 知识库:通过文档(Word、PDF、Excel、Txt、Markdown、Json、PPT)等形式导入知识库,可以进行知识库问答。 GPTs 生成:此平台支持创建个性化的GPT模型,尝试构建您自己的GPT模型。 API接口发布:将内部功能以API的形式对外提供,便于开发者将AntSK 集成进其他应用,增强应用智慧。 API插件系统:开放式API插件系统,允许第三方开发者或服务商轻松将其服务集成到AntSK,不断增强应用功能。 .Net插件系统:开放式dll插件系统,允许第三方开发者或服务商轻松将其业务功能通过标准格式的代码生成dll后集成到AntSK,不断增强应用功能。

2025-03-04

AntSK免安装部署版(需要.net 8 SDK环境)

AntSK是一个可以运行本地/在线大模型的 AI知识库项目

2025-01-13

AntSK0.5.1 一件部署包,可以快速实现本地RAG知识库

AntSK功能介绍 基于.Net8+AntBlazor+SemanticKernel 打造的AI知识库/智能体 核心功能 语义内核 (Semantic Kernel):采用领先的自然语言处理技术,准确理解、处理和响应复杂的语义查询,为用户提供精确的信息检索和推荐服务。 内存内核 (Kernel Memory):具备持续学习和存储知识点的能力,AntSK 拥有长期记忆功能,累积经验,提供更个性化的交互体验。 知识库:通过文档(Word、PDF、Excel、Txt、Markdown、Json、PPT)等形式导入知识库,可以进行知识库问答。 GPTs 生成:此平台支持创建个性化的GPT模型,尝试构建您自己的GPT模型。 API接口发布:将内部功能以API的形式对外提供,便于开发者将AntSK 集成进其他应用,增强应用智慧。 API插件系统:开放式API插件系统,允许第三方开发者或服务商轻松将其服务集成到AntSK,不断增强应用功能。 .Net插件系统:开放式dll插件系统,允许第三方开发者或服务商轻松将其业务功能通过标准格式的代码生成dll后集成到AntSK,不断增强应用功能。

2024-09-30

AntSK0.5.0 一件部署包,可以快速实现本地RAG知识库

AntSK功能介绍 基于.Net8+AntBlazor+SemanticKernel 打造的AI知识库/智能体 核心功能 语义内核 (Semantic Kernel):采用领先的自然语言处理技术,准确理解、处理和响应复杂的语义查询,为用户提供精确的信息检索和推荐服务。 内存内核 (Kernel Memory):具备持续学习和存储知识点的能力,AntSK 拥有长期记忆功能,累积经验,提供更个性化的交互体验。 知识库:通过文档(Word、PDF、Excel、Txt、Markdown、Json、PPT)等形式导入知识库,可以进行知识库问答。 GPTs 生成:此平台支持创建个性化的GPT模型,尝试构建您自己的GPT模型。 API接口发布:将内部功能以API的形式对外提供,便于开发者将AntSK 集成进其他应用,增强应用智慧。 API插件系统:开放式API插件系统,允许第三方开发者或服务商轻松将其服务集成到AntSK,不断增强应用功能。 .Net插件系统:开放式dll插件系统,允许第三方开发者或服务商轻松将其业务功能通过标准格式的代码生成dll后集成到AntSK,不断增强应用功能。

2024-08-22

Deep Learning Tutorial

人工智能学习文档 Deep Learning Tutorial 适合新手学习

2017-12-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除