大模型之Spring AI实战系列(三十八):Spring Boot + Ollama 实现文本向量嵌入功能

在使用 Spring AI文本转换为向量表示时,通常涉及以下几个关键步骤:文本预处理、选择或配置合适的嵌入模型(Embedding Model),以及执行文本向量的转换过程。以下是一个基于 Spring AI 的示例实现,展示如何将文本转换为向量表示。 ### 1. 添加依赖项 首先,在 `pom.xml` 中添加 Spring AI 和相关依赖: ```xml <dependencies> <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-openai</artifactId> <version>0.8.1</version> <!-- 请根据最新版本调整 --> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter</artifactId> </dependency> </dependencies> ``` ### 2. 配置 OpenAI 嵌入模型 接下来,配置一个用于文本嵌入的服务。例如,使用 OpenAI 的 `text-embedding-ada-002` 模型: ```java import org.springframework.ai.embedding.EmbeddingClient; import org.springframework.ai.openai.OpenAiEmbeddingClient; import org.springframework.ai.openai.api.OpenAiApi; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; @Configuration public class EmbeddingConfig { @Bean public EmbeddingClient embeddingClient() { return new OpenAiEmbeddingClient(new OpenAiApi("your-openai-api-key")); } } ``` ### 3. 使用 EmbeddingClient 转换文本向量 然后,可以通过注入 `EmbeddingClient` 来调用嵌入服务,并将文本转换为向量表示: ```java import org.springframework.ai.embedding.EmbeddingClient; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Service; import java.util.List; @Service public class TextToVectorService { private final EmbeddingClient embeddingClient; @Autowired public TextToVectorService(EmbeddingClient embeddingClient) { this.embeddingClient = embeddingClient; } public List<Double> convertTextToVector(String text) { // 调用嵌入客户端生成向量表示 return embeddingClient.embed(text); } } ``` ### 4. 测试文本向量的转换 最后,可以编写一个简单的测试类来验证文本是否能够成功转换为向量表示: ```java import org.springframework.boot.CommandLineRunner; import org.springframework.stereotype.Component; @Component public class TextToVectorRunner implements CommandLineRunner { private final TextToVectorService textToVectorService; public TextToVectorRunner(TextToVectorService textToVectorService) { this.textToVectorService = textToVectorService; } @Override public void run(String... args) throws Exception { String sampleText = "This is a sample text to be converted into a vector."; List<Double> vector = textToVectorService.convertTextToVector(sampleText); System.out.println("Text: " + sampleText); System.out.println("Vector: " + vector); } } ``` ### 总结 通过上述代码,展示了如何使用 Spring AI文本转换为向量表示。核心思想是利用嵌入模型(如 OpenAI 的 `text-embedding-ada-002`)对文本进行编码[^1]。这种向量化的方法可以广泛应用于自然语言处理任务中,例如语义相似度计算、聚类分析等。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寻道AI小兵

🐳 感谢你的巨浪支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值