1 引言
NFM模型针对FM的二阶部分进行优化,通过交叉池化层和深度神经网络,为模型引入高阶特征交叉能力和非线性能力。它综合了FM的显式特征交叉,以及DNN的高阶特征交叉能力,同时具备二者的优点。由新加坡国立大学研究人员,于2017年提出,全称“ Neural Factorization Machines for Sparse Predictive Analytics”[9]。
NFM模型针对FM的二阶部分进行优化,通过交叉池化层和深度神经网络,为模型引入高阶特征交叉能力和非线性能力。它综合了FM的显式特征交叉,以及DNN的高阶特征交叉能力,同时具备二者的优点。由新加坡国立大学研究人员,于2017年提出,全称“ Neural Factorization Machines for Sparse Predictive Analytics”[9]。