精通推荐算法21:特征交叉之NFM -- 异构模型Deep侧加入显式交叉

1 引言

NFM模型针对FM的二阶部分进行优化,通过交叉池化层和深度神经网络,为模型引入高阶特征交叉能力和非线性能力。它综合了FM的显式特征交叉,以及DNN的高阶特征交叉能力,同时具备二者的优点。由新加坡国立大学研究人员,于2017年提出,全称“ Neural Factorization Machines for Sparse Predictive Analytics[9]

2 NFM模型推导

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谢杨易

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值