精通推荐算法10:基于同构图游走的Graph Embedding

Item2vec等基于序列的Embedding方法,需要大量用户行为数据。且当数据比较稀疏时,某些物品间可能没有直接相连,影响它们的表达效果。近些年基于图结构的Graph Embedding应用越来越广泛,其优点十分多。它充分考虑了节点间的距离等结构信息,可以更好的处理稀疏数据,并能够捕捉节点周围邻居节点的信息,因此表达能力更强。

Graph Embedding可以分为游走类和图神经网络两大类,其中游走类又有同构图和异构图两种。同构图典型代表有DeepWalk、Line、Node2vec和SDNE等网络,异构图则以Metapath2VecEGES等网络为代表。本节针对同构图网络进行重

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谢杨易

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值