Item2vec等基于序列的Embedding方法,需要大量用户行为数据。且当数据比较稀疏时,某些物品间可能没有直接相连,影响它们的表达效果。近些年基于图结构的Graph Embedding应用越来越广泛,其优点十分多。它充分考虑了节点间的距离等结构信息,可以更好的处理稀疏数据,并能够捕捉节点周围邻居节点的信息,因此表达能力更强。
Graph Embedding可以分为游走类和图神经网络两大类,其中游走类又有同构图和异构图两种。同构图典型代表有DeepWalk、Line、Node2vec和SDNE等网络,异构图则以Metapath2Vec和EGES等网络为代表。本节针对同构图网络进行重