精通推荐算法4:经典DNN框架特征交叉模型 Deep Crossing

微软2016年提出的Deep Crossing模型奠定了深度学习精排模型的基本架构,具有十分重要的意义。它采用“Embedding + MLP”的结构,成为目前推荐算法的基本范式。通过深度神经网络,实现大规模特征自动组合,大大减少了对人工构造交叉组合特征的依赖和开销。同时将残差网络第一次落地到推荐算法中,优化深度学习反向传播梯度弥散和过拟合等问题。并且完整解决了特征工程、Embedding稀疏向量稠密化等各种关键问题。虽然发表距今已有很多年,但仍然是一个非常重要的模型。

Deep Crossing论文地址,微软,2016年,KDD

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谢杨易

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值