LangSmith 入门

本文介绍了如何在Python中创建LangSmithAPI密钥,安装库,设置环境变量,并展示了如何使用LangSmith进行自动追踪,调用OpenAIAPI并查看输出轨迹的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

创建API key

安装LangSmith库

Log your first trace


创建API key

进入Getting started with LangSmith 点击

在新的页面需要登录,然后点击头像,然后是Settings

第一行API keys,然后Create Api Key

输入描述

得到key

设置环境变量(windows10)

or

os.environ['LANGCHAIN_API_KEY'] = LANGCHAIN_KEY

验证环境变量

api_key = os.getenv('LANGCHAIN_API_KEY')

print(api_key)

安装LangSmith库

命令

pip install -U langsmith

检查

pip show langsmith

结果

Name: langsmith
Version: 0.1.40
Summary: Client library to connect to the LangSmith LLM Tracing and Evaluation Platform.
Home-page: https://smith.langchain.com/
Author: LangChain
Author-email: support@langchain.dev
License: MIT
Location: c:\users\grit\.conda\envs\sophia39\lib\site-packages
Requires: orjson, pydantic, requests
Required-by: langchain, langchain-community, langchain-core

Log your first trace

import sys
import os
 
current_dir = os.path.dirname(__file__)
parent_dir = os.path.dirname(current_dir)
sys.path.append(parent_dir)
 
from constants import LANGCHAIN_KEY,OEPNAI_KEY,PROXY_URL

os.environ['LANGCHAIN_API_KEY'] = LANGCHAIN_KEY
os.environ['OPENAI_API_KEY'] = OEPNAI_KEY
os.environ['OPENAI_API_BASE'] = PROXY_URL

import openai
from langsmith.wrappers import wrap_openai
from langsmith import traceable

# Auto-trace LLM calls in-context
client = wrap_openai(openai.Client())

@traceable # Auto-trace this function
def pipeline(user_input: str):
    result = client.chat.completions.create(
        messages=[{"role": "user", "content": user_input}],
        model="gpt-3.5-turbo"
    )
    return result.choices[0].message.content

print(pipeline("Hello, world!"))

输出

Hello! How can I assist you today?

查看LangSmith输出轨迹

参考文献

Getting started with LangSmith 

<think>我们正在处理关于LangChainLangSmith的概述、使用方法和集成的问题。根据提供的引用[^1],我们知道LangChain简化了LLM应用程序生命周期的每个阶段,包括开发、产品化和部署。具体来说:-开发阶段:使用LangChain的开源组件和第三方集成构建应用程序,使用LangGraph构建有状态智能体。-产品化阶段:使用LangSmith检查、监控和评估应用程序,以便优化和部署。 -部署阶段:使用LangGraph平台将LangGraph应用程序转变为可投入生产的API和助手。因此,我们的回答应该围绕这三个方面展开,提供LangChainLangSmith的概述、使用方法和集成应用。 **回答结构:** 1. **概述**:介绍LangChainLangSmith是什么,以及它们之间的关系。2.**使用方法**:-LangChain的使用:如何利用其组件构建应用程序,特别是使用LangGraph构建智能体。-LangSmith的使用:如何利用LangSmith进行监控、评估和优化。3.**集成应用**:如何将LangChainLangSmith集成到整个LLM应用开发生命周期中。**注意**:由于引用[^1]提供了基本框架,我们将在此基础上扩展,但需要确保信息准确。由于没有更多引用,我们将主要基于此引用进行回答,并尽可能补充一般知识。**生成相关问题**:在最后,根据回答内容生成3个相关问题。**回答语言**:中文。现在开始构建回答。</think>### LangChainLangSmith 概述与集成应用 LangChain 是一个开源框架,旨在简化大型语言模型(LLM)应用程序的开发与管理。LangSmith 是其配套平台,专注于应用部署后的监控与优化。二者共同覆盖 LLM 应用的全生命周期: #### **1. LangChain 核心功能** - **开发阶段** - 提供模块化组件(如提示模板、记忆模块、链式工作流),支持快速构建 LLM 应用。 - 通过 `LangGraph` 实现**有状态智能体**开发,支持流式响应和人工干预机制。 *示例代码:创建基础链式工作流* ```python from langchain.chains import LLMChain from langchain.llms import OpenAI from langchain.prompts import PromptTemplate prompt = PromptTemplate(template="解释{概念}的技术原理", input_variables=["概念"]) llm_chain = LLMChain(prompt=prompt, llm=OpenAI()) print(llm_chain.run("注意力机制")) ``` #### **2. LangSmith 的核心作用** - **产品化阶段** - **监控**:实时跟踪 API 调用延迟、错误率和 token 消耗。 - **评估**:通过测试数据集量化模型输出质量(如相关性、准确性)。 - **优化**:识别低效提示或链式结构,提供 A/B 测试工具。 - **部署阶段** - 将 `LangGraph` 智能体转化为生产级 API,支持自动扩缩容和访问控制。 #### **3. 集成工作流** 1. **开发集成** - 连接向量数据库(如 Pinecone)或工具(如 Wolfram Alpha)扩展功能。 - 使用 `LangChain Expression Language` 声明复杂工作流: ```python from langchain_core.runnables import RunnableParallel workflow = RunnableParallel(step1=llm_chain, step2=data_loader) ``` 2. **产品化衔接** - 在 LangSmith 中注册 LangChain 应用,自动生成调用跟踪日志。 - 设置警报规则(如错误率 >5% 时触发通知)。 3. **部署流程** - 通过 LangSmith 控制台一键部署至云服务(如 AWS/Azure)。 - 集成 CI/CD 管道,实现测试通过后自动发布新版本。 #### **典型应用场景** - **智能客服**:用 LangChain 构建多轮对话流,LangSmith 监控用户满意度。 - **知识库问答**:集成检索增强生成(RAG)架构,LangSmith 优化检索精度。 - **数据分析助手**:通过 LangGraph 协调 Python 执行器与 LLM,LangSmith 审计代码安全性。 > **关键优势**:LangChain 降低开发门槛,LangSmith 解决生产环境中的可观测性问题,二者形成闭环迭代[^1]。 --- ### 相关问题 1. LangChain 如何实现检索增强生成(RAG)架构? 2. 在 LangSmith 中设计评估指标的具体方法有哪些? 3. LangGraph 的有状态智能体与传统链式工作流有何区别?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSU迦叶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值