题目:
题解:
思路:二分答案转化为判定
- 题目要求的是在D天内得最低运载能力,设为x,那么(-∞,x)内的运载能力无法完成D天的运输,在[x,+∞)内的运载能力能完成D天内的运输,所以套用大于等于x的最小位置模板即可
代码如下:
class Solution {
public:
int shipWithinDays(vector<int>& a, int d) {
// 二分的边界:下边界,由于我们不能拆分一个包裹,则最少装载数为max(a);上边界,最大运载能力就是一次运送完所有的包裹,即sum(a)
int l=*max_element(a.begin(),a.end()),r=accumulate(a.begin(),a.end(),0);
while(l<r){
int mid=(r+l)>>1;
// cnt用来记录天数,初始化为1,非空的数组至少需要1天运送完;cur用来记录当前这一天之前已经运送的包裹数之和
int cnt=1,cur=0;
for(int x:a){
// 之前所有包裹数之和加上本天的包裹数 大于运载能力mid,则将cur清0,然后将天数+1
if(x+cur>mid)cnt++,cur=0;
cur+=x;
}
// 以下为寻找大于等于x的最小位置模板
if(cnt<=d)r=mid;// 能在d天内运送完所有包裹,则说明此时运载能力mid满足条件,可在左区间内寻找更小的运载能力
else l=mid+1;// 不能在d天能运送完所有包裹则说明运载能力mid太小了,在d天内完不成运载,所以需要在右区间寻找更da的运载能力
}
return l;
}
};