[二分法][等差公式]leetcode367:有效地完全平方数(easy)

本文介绍并实现了两种高效判断一个整数是否为完美平方数的方法:一是使用二分法搜索,二是利用等差数列求和公式进行判断。通过这两种算法,可以快速确定任意正整数是否为某个整数的平方。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题解:
在这里插入图片描述


题解:

思路1:二分法寻找平方数
思路2:等差数列求和公式判断是否为平方数


代码如下:

// 思路1 二分法求平方数
using LL = long long;
class Solution {
public:
    // 思路:二分法
    bool isPerfectSquare(int n) {
        LL l=1,r=n/2;
        while(l<r)
        {
            LL mid=l+r>>1;
            if(mid*mid>=n)r=mid;
            else l=mid+1;
        }
        return l*l==n;
    }
};

// 思路2 等差数列
class Solution {
public:
    // 等差数列求和公式:1+3+5+...+(2*n-1)=(2*n-1+1)/2*n=n*n
    bool isPerfectSquare(int n) {
        int x=1;
        while(n>0)n-=x,x+=2;
        return n==0;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值