题解:
题解:
class Solution {
public:
//解法1:STL算法,时间复杂度O(n),空间复杂度O(1)
int search_1(vector<int>& nums, int target) {
auto it=find(nums.begin(),nums.end(),target);
if(it!=nums.end())return it-nums.begin();
else return -1;
}
//解法2:二分法,找到旋转点,时间复杂度O(logn),空间复杂度O(1)
int search_2(vector<int>&nums,int target)
{
if(nums.empty())return -1;
int falg=0;//旋转点,旋转点的标识就是nums[i]>nums[i+1]
for(;falg<nums.size()-1;++falg) //找到旋转点
if(nums[falg]>nums[falg+1])break;
int begin=0,end=nums.size()-1;
int temp=falg+1;//根据旋转点划分区间
while(begin<=falg)//二分查找前半段有序数组
{
int mid=(begin+falg)/2;
if(nums[mid]==target)return mid;
else if(nums[mid]>target)falg=mid-1;
else begin=mid+1;
}
while(temp<=end)//二分查找后半段有序数组
{
int mid=temp+(end-temp)/2;
if(target==nums[mid])return mid;
else if(target>nums[mid])temp=mid+1;
else end=mid-1;
}
return -1;
}
//解法3:二分法模板1,寻找任意等于x的值
int search(vector<int>& nums, int target) {
int left=0,right=nums.size()-1;
while(left<=right){
int mid=left+((right-left)>>1);
if(nums[mid]==target)return mid;
//mid小于right,表示右边有序,我们在右边区间进行二分查找
else if(nums[mid]<nums[right]){
//若target在(mid,right]中,那么我们需要将left设置为mid+1
if(nums[mid]<target&&target<=nums[right]){
left=mid+1;
}
//若target不在(mid,right]中,那么我们需要将right设置为为mid-1
else{
right=mid-1;
}
}
//mid大于等于right,表示左边有序,我们在左边区间进行二分查找
else{
//若target在[left,mid)中,那么我们需要将right改为mid-1
if(nums[left]<=target&&target<nums[mid]){
right=mid-1;
}
//若target不在[left,mid)中,那么我们需要将left设置为mid+1
else{
left=mid+1;
}
}
}
return -1;
}
};