在 C 语言中,排序算法是基本的算法之一。排序的目的是将一个数组按照指定的顺序排列(升序或降序)。排序算法分为两大类:
- 比较排序算法:通过比较元素的大小决定顺序。
- 非比较排序算法:不直接比较元素的大小(如基数排序)。
接下来,我们将详细讲解几种常用的排序算法,并提供 C 语言的实现代码。
1. 冒泡排序(Bubble Sort)
算法简介
- 冒泡排序是最简单的排序算法之一。
- 它通过多次遍历数组,每次将相邻的两个元素比较并交换,直到数组有序。
- 时间复杂度:
- 最优:O(n)(当数组已经有序时,仅需一趟遍历)
- 最差:O(n²)(当数组逆序时)
- 平均:O(n²)
代码实现
#include <stdio.h>
void bubble_sort(int arr[], int n) {
for (int i = 0; i < n - 1; i++) {
int swapped = 0; // 优化:如果某一轮没有发生交换,说明已经有序
for (int j = 0; j < n - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
// 交换相邻元素
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
swapped = 1;
}
}
if (!swapped) break; // 提前退出
}
}
int main() {
int arr[] = {64, 34, 25, 12, 22, 11, 90};
int n = sizeof(arr) / sizeof(arr[0]);
bubble_sort(arr, n);
printf("Sorted array: ");
for (int i = 0; i < n; i++) {
printf("%d ", arr[i]);
}
printf("\n");
return 0;
}
2. 选择排序(Selection Sort)
算法简介
- 每次从未排序的部分中选择最小(或最大)的元素,并将其放到已排序部分的末尾。
- 时间复杂度:
- 最优、最差、平均:O(n²)(始终需要两层循环)
- 特点:
- 简单易实现,但不适合大型数据集。
代码实现
#include <stdio.h>
void selection_sort(int arr[], int n) {
for (int i = 0; i < n - 1; i++) {
int min_index = i;
for (int j = i + 1; j < n; j++) {
if (arr[j] < arr[min_index]) {
min_index = j;
}
}
// 交换最小值到当前位置
int temp = arr[min_index];
arr[min_index] = arr[i];
arr[i] = temp;
}
}
int main() {
int arr[] = {29, 10, 14, 37, 13};
int n = sizeof(arr) / sizeof(arr[0]);
selection_sort(arr, n);
printf("Sorted array: ");
for (int i = 0; i < n; i++) {
printf("%d ", arr[i]);
}
printf("\n");
return 0;
}
3. 插入排序(Insertion Sort)
算法简介
- 每次将一个元素插入到已排序部分的合适位置。
- 时间复杂度:
- 最优:O(n)(数组已部分有序时)
- 最差:O(n²)(数组完全逆序)
- 平均:O(n²)
- 特点:
- 对于小规模或接近有序的数据集效率较高。
代码实现
#include <stdio.h>
void insertion_sort(int arr[], int n) {
for (int i = 1; i < n; i++) {
int key = arr[i];
int j = i - 1;
// 将大于 key 的元素向后移动
while (j >= 0 && arr[j] > key) {
arr[j + 1] = arr[j];
j--;
}
arr[j + 1] = key;
}
}
int main() {
int arr[] = {12, 11, 13, 5, 6};
int n = sizeof(arr) / sizeof(arr[0]);
insertion_sort(arr, n);
printf("Sorted array: ");
for (int i = 0; i < n; i++) {
printf("%d ", arr[i]);
}
printf("\n");
return 0;
}
4. 快速排序(Quick Sort)
算法简介
- 快速排序是基于分治思想的高效排序算法。
- 通过选择一个基准元素(pivot),将数组分为两部分:比基准小的元素和比基准大的元素,然后递归排序。
- 时间复杂度:
- 最优、平均:O(n log n)
- 最差:O(n²)(当每次选择的基准是最小或最大元素时)
代码实现
#include <stdio.h>
void swap(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;
}
int partition(int arr[], int low, int high) {
int pivot = arr[high]; // 选择最后一个元素作为基准
int i = low - 1;
for (int j = low; j < high; j++) {
if (arr[j] < pivot) {
i++;
swap(&arr[i], &arr[j]);
}
}
swap(&arr[i + 1], &arr[high]);
return i + 1;
}
void quick_sort(int arr[], int low, int high) {
if (low < high) {
int pi = partition(arr, low, high);
quick_sort(arr, low, pi - 1);
quick_sort(arr, pi + 1, high);
}
}
int main() {
int arr[] = {10, 7, 8, 9, 1, 5};
int n = sizeof(arr) / sizeof(arr[0]);
quick_sort(arr, 0, n - 1);
printf("Sorted array: ");
for (int i = 0; i < n; i++) {
printf("%d ", arr[i]);
}
printf("\n");
return 0;
}
5. 归并排序(Merge Sort)
算法简介
- 归并排序是基于分治思想的排序算法。
- 将数组分成两部分,分别排序后合并。
- 时间复杂度:
- 最优、最差、平均:O(n log n)
- 特点:
- 稳定排序,适合大规模数据。
代码实现
#include <stdio.h>
#include <stdlib.h>
void merge(int arr[], int l, int m, int r) {
int n1 = m - l + 1;
int n2 = r - m;
int *L = malloc(n1 * sizeof(int));
int *R = malloc(n2 * sizeof(int));
for (int i = 0; i < n1; i++) L[i] = arr[l + i];
for (int j = 0; j < n2; j++) R[j] = arr[m + 1 + j];
int i = 0, j = 0, k = l;
while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
arr[k] = L[i];
i++;
} else {
arr[k] = R[j];
j++;
}
k++;
}
while (i < n1) arr[k++] = L[i++];
while (j < n2) arr[k++] = R[j++];
free(L);
free(R);
}
void merge_sort(int arr[], int l, int r)