1.题目
给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
示例 2:
输入:coins = [2], amount = 3
输出:-1
示例 3:
输入:coins = [1], amount = 0
输出:0
提示:
1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/coin-change
2.思路
(1)动态规划
设 dp[i] 表示组成金额 i 所需最少的硬币数量,假设在计算 dp[i] 之前,已经计算出 dp[0]—dp[i - 1] ,那么 dp[i] 对应的状态转移方程应为:
dp[i] = min(dp[i], dp[i - coins[j]] + 1) 0 ≤ i < amount + 1, 0 ≤ j < coins.length
相关题目:
LeetCode_动态规划_背包问题_中等_518.零钱兑换 II
LeetCode_动态规划_中等_279.完全平方数
3.代码实现(Java)
//思路1————动态规划
class Solution {
public int coinChange(int[] coins, int amount) {
// dp[i] 表示组成金额 i 所需最少的硬币数量
int[] dp = new int[amount + 1];
Arrays.fill(dp, amount + 1);
Arrays.sort(coins);
dp[0] = 0;
for (int i = 1; i <= amount; i++) {
for (int j = 0; j < coins.length && coins[j] <= i; j++) {
dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);
}
}
return dp[amount] == amount + 1 ? -1 : dp[amount];
}
}