LeetCode_动态规划_中等_322.零钱兑换

该博客介绍了如何使用动态规划解决零钱兑换问题,给定不同面额的硬币和总金额,求解凑成总金额所需的最少硬币数量。示例展示了不同情况下的解题思路,并给出了Java代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.题目

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。

示例 1:
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1

示例 2:
输入:coins = [2], amount = 3
输出:-1

示例 3:
输入:coins = [1], amount = 0
输出:0

提示:
1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/coin-change

2.思路

(1)动态规划
设 dp[i] 表示组成金额 i 所需最少的硬币数量,假设在计算 dp[i] 之前,已经计算出 dp[0]—dp[i - 1] ,那么 dp[i] 对应的状态转移方程应为:

dp[i] = min(dp[i], dp[i - coins[j]] + 1)    0 ≤ i < amount + 1, 0 ≤ j < coins.length

相关题目:
LeetCode_动态规划_背包问题_中等_518.零钱兑换 II
LeetCode_动态规划_中等_279.完全平方数

3.代码实现(Java)

//思路1————动态规划
class Solution {
    public int coinChange(int[] coins, int amount) {
	    // dp[i] 表示组成金额 i 所需最少的硬币数量
        int[] dp = new int[amount + 1];
        Arrays.fill(dp, amount + 1);
        Arrays.sort(coins);
        dp[0] = 0;
        for (int i = 1; i <= amount; i++) {
            for (int j = 0; j < coins.length && coins[j] <= i; j++) {
                dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);
            }
        }
        return dp[amount] == amount + 1 ? -1 : dp[amount];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码星辰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值