扩散模型与强化学习(13):In-Context Reward Hacking现象与解决方案

扩散模型与强化学习(0):专栏汇总与导航

前言:奖励作弊(Reward Hacking)指智能体通过钻规则漏洞而非真正完成任务来最大化奖励信号。以论文编辑实验为例,研究提出“上下文奖励作弊”(ICRH)概念,即模型利用共享上下文钻空子,如盲目添加“正确!”或输出无关内容。实验发现,模型规模扩大可能加剧ICRH,且提示词优化难以根治。与传统奖励作弊不同,ICRH发生在部署阶段,由通用性驱动。

目录

什么是奖励作弊(Reward Hacking)?

论文评估和编辑中的情境奖励黑客实验

什么是“上下文奖励作弊”(In-Context Reward Hacking)?

举例说明

进一步研究:ICRH 与外部反馈机制

1. 输出优化(Output-Refinement)

2. 策略优化(Policy-Refinement)

ICRH 与传统奖励黑客的区别

如何应对 ICRH?


什么是奖励作弊(Reward Hacking)?

在强化学习或人工智能对齐领域,奖励作弊指的是模型或智能体为了最

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值