【DeepSeek R1构建本地RAG知识库】Embedding模型原理详解


前言

当我们利用检索增强生成(RAG)技术构建本地知识库时,Embedding模型就像是这个知识宝库的智能化导航系统,它能够帮助我们迅速且精准地定位到所需的信息。

对于刚刚涉足这一领域的初学者而言,可能会对Embedding模型的本质及其在本地知识库中的功能感到困惑。近期关于本地知识库的课程中,不少学习者也表达了相似的疑问。

接下来,我们将采用简单明了的语言,并结合实际案例,深入讨论这些问题,同时也会介绍如何整理本地的知识素材,以便让基于本地RAG的问题回答变得更加精确和全面。


一、Embedding 模型是什么

简单来讲,Embedding 就像是给数据穿上了一件“数字外衣”,把原本各种各样的数据(比如文本、图像、语音等)转化成一组数字,也就是向量来表示。

在这里插入图片描述
Embedding向量本质上是将语义信息映射到高维空间的数学坐标。以3D空间为例:

“猫” → [0.7, -0.3, 0.1]
“犬” → [0.68, -0.25, 0.15]
“发动机” → [-0.4, 0.8, 0.5]

维度解释:

  • 低维(<100):语义区分能力弱,可能出现"苹果"(水果)与"苹果"(手机)混淆
  • 高维(&
### 构建RAG模型私有知识库 #### 使用Deepseek和Dify实现本地部署 为了在本地环境中使用Deepseek和Dify构建RAG模型的私有知识库,需完成一系列配置与集成操作。具体过程涉及环境准备、安装必要的软件包和服务设置。 #### 环境准备 确保拥有适合运行大型语言模型的基础架构,包括但不限于足够的计算资源(CPU/GPU)、内存空间及存储容量。此外,还需准备好支持Python编程的语言环境及相关依赖项[^3]。 #### 安装Deepseek-R1 按照官方文档指导,在服务器上部署Deepseek-r1版本的大规模预训练模型实例。此步骤通常涉及到下载权重文件、调整参数配置以适应硬件条件等操作[^1]。 #### 配置Dify平台 通过Dify提供的API接口或命令行工具连接已部署好的Deepseek-r1服务端口,使两者之间建立有效的通信链路。此时可以测试二者之间的连通性,确认消息传递正常无误[^2]。 #### 创建嵌入式索引 针对目标领域内的文本资料集执行向量化处理,生成对应的embedding表示形式,并将其导入至数据库中形成结构化的索引体系。这一环节对于后续查询效率至关重要。 #### 实现检索增强机制 设计合理的算法逻辑,使得当用户发起咨询请求时,系统能够快速定位最相关的背景信息片段作为辅助材料输入给LLM进行响应合成;同时保持对话流畅性和自然度不受影响。 ```python from dify import DifyClient import deepseek as ds client = DifyClient(api_key='your_api_key') model = ds.load_model('path_to_deepseek_r1') def get_context(query): embeddings = model.encode([query]) results = client.search(embeddings=embeddings, top_k=5) context = " ".join([r['text'] for r in results]) return context ``` 上述代码展示了如何利用Dify客户端API获取与查询语句相似度最高的几个条目,并将它们组合成一段连续的文字串供进一步分析使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xd聊架构

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值