模型压缩技术:剪枝、量化与知识蒸馏实战
模型压缩技术:剪枝、量化与知识蒸馏实战
,在深度学习领域,模型的性能往往与模型的规模紧密相关,更大的模型通常能学习到更复杂的模式,从而在任务中取得更好的效果。然而,随着模型规模的不断增大,其在实际应用中面临着诸多挑战,如内存占用高、计算资源需求大、推理速度慢等问题,这使得在资源受限的设备(如移动设备、嵌入式设备)上部署变得困难重重。模型压缩技术应运而生,它旨在在尽可能保持模型性能的前提下,通过各种方法减少模型的参数数量和计算量,提高模型的效率和可部署性。剪枝、量化与知识蒸馏作为模型压缩的核心技术,受到了广泛的关注和研究。本文将深入探讨这三项技术,并结合实战代码,帮助读者更好地理解和应用它们。
一、前言
计算机视觉是一门研究如何使机器“看”的