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Abstract

The confluence of a number of relatively recent trends in-
cluding the development of virtualization technologies,
the deployment of micro datacenters at PoPs, and the
availability of microservers, opens up the possibility of
evolving the cloud, and the network it is connected to,
towards a superfluid cloud: a model where parties other
than infrastructure owners can quickly deploy and mi-
grate virtualized services throughout the network (in the
core, at aggregation points and at the edge), enabling a
number of novel use cases including virtualized CPEs
and on-the-fly services, among others.

Towards this goal, we identify a number of required
mechanisms and present early evaluation results of their
implementation. On an inexpensive commodity server,
we are able to concurrently run up to 10,000 specialized
virtual machines, instantiate a VM in as little as 10 mil-
liseconds, and migrate it in under 100 milliseconds.

1 Introduction

Cloud and data centers deployments have become per-
vasive, largely as a result of the availability of inexpen-
sive commodity servers, higher capacity network links
and ever improving virtualization technologies. Services
such as Amazon EC2, Rackspace, and Microsoft Azure
are now commonplace and the adoption of cloud-based
technologies is ever accelerating.

More recently, network operators have started getting
into the game through the Network Function Virtualiza-
tion (NFV) trend, whereby network services and pro-
cessing are run within virtual machines (VMs) on top of
commodity hardware servers [2]. In addition, squeezed
by tougher competition and constantly increasing band-
width demands, operators are trying to move away from
acting as simple bit pipes and into the more lucrative field
of providing services; to achieve this, a number of major
telcos have started deploying micro data centers (e.g., a

single rack of commodity servers) at Points-of-Presence
sites, initially to run their own services but in the longer
run to rent out those resources to third parties [4].

The trend towards deployment of commodity hard-
ware at network edges goes beyond this: Google de-
ploys large numbers of caches in networks throughout
the world as does Akamai, and a recent ETSI white pa-
per on Mobile Edge Computing (MEC) argues for plac-
ing servers in aggregation and radio access networks next
to base stations and radio network controllers [3]. Other
big players such as Intel are also jumping in, calling for
the deploying of servers in so-called “smart cells” [6].

One final trend is the recent availability of a number
of low-cost, low-energy, single-board microservers (e.g.,
CubieTrucks, Raspberry Pis, fit-PCs, etc.) equipped with
ARM, x86 and MIPS CPUs. These microservers open up
the possibility of pushing cloud services to the very edge
of access networks, in places where energy consumption
or space constraints might render the deployment of tra-
ditional servers an impossibility.

We believe that the confluence of all of these trends
constitutes the basic infrastructure needed towards an
evolution of the cloud, and the network it is connected
to, towards a superfluid cloud: a model where multi-
tenant, virtualized software-based services run on com-
mon, shared commodity hardware infrastructure de-
ployed throughout the network. Network operators and
third parties (e.g., cloud operators, service and content
providers, application developers and even end users)
would have the the ability to instantiate such services on-
the-fly, whenever needed, and run potentially thousands
of them on a single inexpensive platform (thus support-
ing a large number of concurrent users), migrating them
near-instantaneously (in milliseconds, allowing for trans-
parent adaptation to changing requirements and network
conditions) and deploying them across a wide range of
hardware and locations, ranging from base stations and
multi-cell aggregation sites all the way to data centers in
the core of the network.



Figure 1: Superfluid cloud architecture. Multi-tenant platforms are deployed throughout the network: at the core, the
aggregation network and the edge. Virtualized processing is instantiated on them quickly and whenever needed, in
milliseconds, and migrated when conditions change or applications require it.

Figure 1 shows the overall superfluid cloud architec-
ture in greater detail. A set of platforms running on
different types of hardware (microservers, small racks,
larger x86 deployments) are set up at different points
in the network: next to base stations and aggregation
sites in access networks, at micro data centers at Point-
of-Presence sites in aggregation networks, and at full-
fledged data centers in the core network. Each of these
platforms is multi-tenant, and network processing and
services can be instantiated by third parties on-the-fly,
when and where they are needed. End-users, applica-
tion developers and any tenant decide the trade-off be-
tween low-delay access near the edge (left-hand side of
the figure) and high compute/storage capacity near the
core (right-hand side) 1.

To bring this vision closer to reality, we make a num-
ber of specific contributions: (1) optimizations that al-
low us to concurrently boot as many as 10,000 virtual
machines on a single, relatively inexpensive commodity
server, and to keep their creation times down to hundreds
of milliseconds in the worst case (e.g., for the 10,000th
VM); (2) a comparison with LXC containers that shows
that minimalistic VMs have creation times on par with
containers; and (3) optimizations that reduce migration
times from 480 to 82 milliseconds.

2 Motivating Use Cases and Requirements

So far we have painted a rather high level picture of the
superfluid cloud architecture and the idea of running vir-
tualized services and processing whenever and wherever
needed, throughout different networks and on different
types of commodity hardware. To make things more con-

1Some of this is already happening, but only for point solutions
by big players who can afford high up-front deployment costs (e.g.,
Google cache).

crete, we now describe a number of illustrating use cases:

• Virtual CPE: A number of operators are driving to-
wards virtualizing CPEs (Customer Premise Equip-
ment) and running them in their own data centers,
as opposed to customers’ homes, in order to reduce
maintenance costs and simplify roll out of new fea-
tures. To support this while keeping costs down, it
would be beneficial to be able to run as many of
these instances as possible on a single server (in the
range of thousands to be inline with the number of
residential customers), and for the server to achieve
high (cumulative) throughput.

• Virtual CDNs: Virtual CDN operators could de-
ploy virtualized content caches at edge networks,
growing their infrastructure as their business grows.
This points to the need of running many virtual
cache instances concurrently, and to provide high
throughput, especially for delivery of high defini-
tion video. Fast migration could further be used to
move a cache to a more efficient place in the net-
work without losing its state (e.g., statistics about
content hits).

• On-the-fly Services: Mobile customers could pay
for on-demand ad removal in order to improve their
browsing experience without draining their battery
power, or could use aggressive traffic compression
at the edge when the cellular load is high. Such
use cases would benefit from fast instantiation of the
virtualized service, and could go as far as support-
ing fine-granularity, per-flow processing by quickly
creating a VM as the TCP SYN of a flow is first
seen. This is similar to JITSU [8], which opti-
mizes VM and connection start-up times on x86 and
ARM-based devices, and Cloudlets [12], which pro-
posed offloading processing from mobile devices to
the edge.
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• Latency-sensitive Applications: Applications
such as Google glass, Siri or game servers could be
run directly at the edge, perhaps using microserver
platforms.

• Personalized Edge Services: Per-customer ser-
vices (e.g., firewalls, parental control, etc.) could be
deployed at the edge, and quickly migrated when-
ever a mobile device changes networks.

While certainly not comprehensive, this list gives an
idea of the type of mechanisms that these use cases re-
quire. First among these is what we term massive consol-
idation, running large numbers of virtualized instances
on a single server. This is important at the edge of the
network, since not that many servers are available there;
useful for microservers which are resource-constrained;
and advantageous in the core where reducing operating
costs (energy, cooling) and investment ones (i.e., fewer
servers) is key.

In addition, fast migration is required in order to be
able to adapt to changing network conditions (e.g., in-
creased link delay at a particular site, flash crowds, etc.).
Doing so in less than one hundred milliseconds would
even open up the possibility of migrating services with-
out breaking end user connections [10].

Further, fast (e.g., tens of milliseconds) service instan-
tiation and teardown would allow for on-the-fly instantia-
tion of services (and their quick teardown), perhaps even
as a connection is created, and high throughput would be
needed to support potentially high cumulative rates when
running large number of concurrent VMs. Finally, mi-
croserver support is needed to be able to push processing
all the way to the very edge of the network.

Having identified a set of requirements, in the rest of
the paper we explain the progress we have made towards
them and provide early evaluation results. It is worth not-
ing that security concerns as to whether certain types of
services should be allowed to run (and by whom) are out
of scope for this paper, but should certainly be addressed
if the vision of a superfluid cloud is to have a chance
of becoming reality. Thankfully, there is ongoing work
towards using static checking techniques to programmat-
ically decide whether certain network processing should
be deployed in a network [13].

3 Implementation

As an initial prototype, we base our implementation on
the Xen hypervisor, and the guests (i.e., the virtual ma-
chines) on MiniOS, a minimalistic, para-virtualized op-
erating system distributed with the Xen sources. As
future work, we are looking to expand this to include
KVM and other operating systems for the guests such as
OSv [7] and stripped-down versions of Linux. We will

further look at carrying out optimizations for containers.
Our work continues along the trend of using special-

ized, minimalistic VMs (e.g, Mirage[9], ClickOS [11],
Erlang on Xen [1], OSv [7], etc.), but takes it further,
seeking to optimize the number of VMs that can be con-
currently run, how fast they can be instantiated and torn
down, how fast they can be migrated, their memory foot-
print, which platforms they can run on, and the through-
put that can be handled. We are further working towards
comparing these against containers, and provide some
early results of this in this paper.

3.1 Massive Consolidation

Our first and biggest contribution is towards massive con-
solidation: the ability to concurrently run large numbers
of VMs (potentially 10,000 or more) on a single, inex-
pensive commodity server. Out of the box, when we
started this work with Xen 4.2, we were limited to only
about 300 guests at most due to Linux not being config-
ured to provide enough file descritors in order for Xen
to provide console access to the VMs. While this issue
is easily fixed, a number of others existed, so we carried
out three major changes and a number of minor modifi-
cations in order to push the number of concurrent guests.

The first major change was to the XenStore, a proc-
like back-end used to keep information about running
VMs (e.g., their names and IDs, their virtual mac ad-
dresses, etc.). Basic operations such as creation, destruc-
tion and migration of VMs need to read and write entries
to it, and so their performance is tightly linked to that of
the XenStore. To improve it, we have written a stream-
lined version from scratch we call lixs (LIghtweight
XenStore); lixs is written in c++, consists of about
2500 LoC, and has a pluggable system allowing us to use
different storage back-ends (e.g., from a full database to
a simple map).

The second major change is to xl, the main Xen man-
agement command and toolstack used to carry out op-
erations such as VM creation and console access. We
partially replace xl by xcl (XenCtrl Light), a simpli-
fied toolstack comprising 600 LoC and tailored to our
purposes (e.g., it only supports para-virtualized and PVH
modes, and VIF virtual interfaces). Among other things,
it reduces the number of required per-guest XenStore en-
tries from 37 to just 17.

The third change is to Xenconsoled, the daemon in
charge of providing users with console access to the
VMs. Out of the box, the daemon has high CPU over-
head during high rates of VM creation (practically 100%
for the core assigned to it). To address this, we modify it
to use the epoll mechanism which scales better to large
numbers of watched file descriptors, and we optimize the
VM creation process by, for instance, preventing Xen-
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consoled from listing all existing domains every time a
domain is created or destroyed.

Finally, we carried out a set of minor changes such as
(1) increasing Linux’s maximum number of PTYs, file
descriptors and IRQs; (2) upgrading to Xen 4.4 to take
advantage of higher numbers of available event channels
(virtual interrupts); (3) using a ramfs for dom0’s and
the guests’ root filesystems; and (4) replacing the hot-
plug script in charge of setting up virtual interfaces and
adding them to the back-end switch with a faster, com-
piled, purpose-built, udevd-like daemon.

3.2 Fast Service Instantiation
Most of the modifications we implemented for massive
consolidation apply to this category, and have the effect
of reducing VM creation and destruction times.

3.3 Fast Migration
In Xen, performing migration consists of the xl toolstack
connecting a file descriptor to the stdin/sdtout of an ssh
process in order to pipe the VM image out to the receiv-
ing host. Benchmarking reveals that the overall migra-
tion time for a minimalistic VM is about 400 millisec-
onds, most of which is spent on copying data over the
ssh pipe and only a small portion of which on write sys-
tem calls.

We optimized this process by implementing a daemon
that is deployed on the receiver. The daemon allocates
a socket which the toolstack uses to write domain pages
to; this is then used in the low-level Xen APIs so that the
hypervisor can directly receive the pages. After all pages
have been received, the receive daemon gets a final no-
tification to bring up the (restored) domain, completing
the process.

As future work, we are looking into optimizing live
migration in other to reduce actual downtime, as well as
investigating potential bottlenecks in other virtualization
technologies such as KVM. We are further planning on
evaluating these mechanisms when VMs are carrying out
memory-intensive processing.

3.4 Microserver Support
In order to see the feasibility of using microservers as
platforms for the superfluid cloud, we attempt to run
Xen, KVM and/or containers (lxc) on a number of them,
ranging from ARM-based CubieTrucks and Raspberry
Pis to x86-based Intel NUCs, Intel Edisons and AMD
Gizmos. This is still ongoing work, and we are plan-
ning on conducting extensive testing to see, among other
things, what sort of processing and how many concurrent
VMs these microservers can handle.

3.5 High Performance and Throughput

We rely on the performance numbers obtained through
the optimized network back-end introduced in [11]. Be-
yond this, we are in the process of implementing persis-
tent grants, a mechanism that provides significant speed-
ups without needing changes to the VMs nor major
changes to the network back-end. In addition, the work
in [11] had at most 100 concurrent VMs running; scal-
ing the back-end, and in particular the software switch,
to larger numbers is ongoing research.

4 Evaluation

Unless otherwise stated, all experiments were performed
on a system with four AMD Opteron 6376@2.3GHz
CPUs (64 cores total) and 128GB of memory, costing
about $4,000 and running Xen 4.4 and Linux 3.14 for
dom0. The virtual machines are based on MiniOS and
include basic functionality that allows them to respond
to pings; this is one of the ways we use to verify that
they are correctly instantiated. In future work we will
carry tests with more realistic workloads.

As a first test, we conduct a boot storm: we attempt
to create up to 10,000 virtual machines on our server as
quickly as possible, and for each VM we measure the
time it took for it to be created. For comparison purposes,
we carry out the same test using LXC containers (kernel
version 3.16.3 and 256KB of memory assigned to each
container) instead of Xen/VMs.

The results for our minimalistic Xen VMs when using
all of the optimizations described in the previous section
are shown in figure 2(a). We are able to run as many
as 10K concurrent virtual machines, with creation times
ranging from about 20 milliseconds with a virtual in-
terface and 12 msecs without for the first VM, up to a
still rather low 135 msecs with a virtual interface and
30 msecs without one for the 10,000th VM. While these
are still rather early results, they are, to the best of our
knowledge, the first time this large number of VMs have
been concurrently run on commodity hardware.

Figure 2(b) depicts results for LXC containers. We
measure a container creation time of about 210 millisec-
onds with an interface and 70 msecs without one for the
first container; and creation times of 3.5 seconds with
an interface and 270 msecs without one for the 10,000th
container. This shows that minimalistic VMs are a vi-
able alternative to containers whenever strong isolation
is a requirement.

Figure 3 shows the effect that using our improved Xen-
Store (lixs) and toolstack (xcl) have over using the
standard oxenstored [5] and toolstack (xl) when car-
rying out a boot storm. The bottom line in the graph is
there as reference and shows the same (best) results as
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(a) Minimalistic Xen VMs (log scale, in milliseconds).
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Figure 2: Comparison of boot storm times for Xen-based
minimalistic virtual machines versus LXC containers.
Each point denotes the time it took for the nth VM or
container to start up.

101

102

103

104

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
re

at
io

n 
T

im
e 

(m
s)

Number of VMs

all optimizations
without lixs (oxenstored)
without lixs (cxenstored)

without xcl (xl)

Figure 3: Breakdown of Xenstore and toolstack opti-
mizations (log scale).

figure 2, that is, when all optimizations are enabled. The
curve above it reports figures when we switch from xcl

to the standard xl; the next curve are results when using
oxenstored instead of lixs; and the final curve reports
figures when relying on the older, C-based cxenstored.

Overall, these optimizations bring tangible results. For
instance, for the 10,000th VM, using oxenstore yields
boot times in the range of 2.9 seconds and 1.9 seconds
with xl, compared to about 135 milliseconds with all
optimizations turned on. It is worth noting that the spikes
on the oxenstored curve might be due to the OCaml
garbage collector kicking in; we are currently looking
into the issue to confirm this.

To test our migration optimizations, we conducted a
test whereby we create an increasing number of VMs on
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Figure 4: Migration time between servers and between a
server and a microserver.

a server and migrate each of them to another server in
turn. For each measurement, the receiving server has no
VMs running2 so that we measure the performance of the
sending host.

Figure 4 shows migration times between servers and
between a server and a microserver. The server labeled
S1 has 2x Intel Xeon E5-2697 v2 2.70GHz CPUs (24
cores total), S2 has 4x AMD Opteron 6376@2.3GHz
CPUs (64 cores total), S3 an Intel Xeon E5-1630 v3 3.7
GHz CPU and the microserver is an Intel NUC with an
i5-4250U 2.6 GHz processor. Tests were done using a
1Gb/s link.

For the S2 to S3 case, it takes 400 msecs for the first
VM to be migrated and 512.7 msecs for the 1000th VM.
When replaced with a faster sender (S1 to S3) results
improve considerably to 314,1 msecs for the first one and
432.6 msecs for the last one; for the server to microserver
case (S2 to NUC), it takes 413.7 msecs for the first VM
and 526.9 msecs secs for the 1,000th one.

As a further test, we connected two S3 servers over
a direct, 10Gb/s link. With this setup, we were able to
measure a migration time of only 86.4 msecs (versus 143
msecs on a 1Gb/s link). We further obtained a migration
time of 480 msecs when using the standard toolstack as
opposed to ours, showing that our optimizations provide
a significant improvement.

The reader may have noticed approximately a factor
of 5 difference between the 86.4 msecs when migrating
from S3 versus 413.7 for S2. We note that the difference
in memory throughput between these two machines is
approximately a factor 5; we are conducting further tests
to confirm this as the cause.

5 Conclusions and Future Work

We have presented the notion of the superfluid cloud, an
architecture that allows parties other than infrastructure
owners to quickly deploy and migrate virtualized ser-
vices throughout the network: in the core, at aggregation

2To achieve this, after each iteration we destroy the VM at the re-
ceiver and re-create it at the sender.
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points and at the edge. We have made inroads towards
implementing some of the mechanisms required by it,
including the ability to concurrently run 10,000 VMs on
a single commodity server, instantiate services in 10 mil-
liseconds, and migrate them in under 100 milliseconds.

6 Discussion Topics

We address each of the issues mentioned in the CFP in
turn:
Expected feedback: We would like to hear whether peo-
ple are seeing similar trends or are actively doing re-
search towards some of the mechanisms described in the
paper. We are particularly interested in use cases we have
missed, ways to improve our work, and potential collab-
orations.
Controversial points: In the past, we have wondered
about the applicability of some of the mechanisms we
have developed (e.g., massive consolidation, fast instan-
tiation) to actual products and deployment, so this may
prove a point of contention. On our end, our concerns
have been allayed a number of times by operators com-
ing up with use cases we had not thought of that leverage
these mechanisms.
Workshop discussion: We hope that this paper will gen-
erate discussion around the usefulness of the superfluid
cloud concept, its mechanisms, and whether there are use
cases we should be addressing. At a lower level, there
might be a discussion around the use of virtual machines
versus containers, or about how Xen-specific some of the
results are.
Issues not addressed: We have not yet tested the sys-
tem under realistic workloads. This is likely to raise po-
tentially difficult scheduling issues when running large
numbers of VMs, as well as putting stress on the back-
end software switch used to connect VMs with the physi-
cal interface(s). Also, we have not particularly tested the
performance of the different microservers we have.

In addition, as mentioned in the paper, security mech-
anisms to decide whether certain types of services should
be deployed (and where and by whom) are out of scope.
Also, we have not looked at management issues to do
with potentially having to deal with large numbers of
VMs, and having to have an efficient management frame-
work so that its overhead does not shatter the fast instan-
tiation and migration times of our system.
Circumstances causing the idea to fall apart: It could
be the case that the trend towards deployment of servers
and micro data centers at the edge slows down or stops,
or that no practical way of opening up these resources to
third parties is found (e.g., because of security or policy
issues). However, in our opinion there are enough im-
portant players driving these developments to make this
unlikely.
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