monad-bayes-1.3.0.3: A library for probabilistic programming.
Copyright(c) Adam Scibior 2015-2020
LicenseMIT
Maintainer[email protected]
Stabilityexperimental
PortabilityGHC
Safe HaskellNone
LanguageHaskell2010

Control.Monad.Bayes.Inference.RMSMC

Description

Resample-move Sequential Monte Carlo (RM-SMC) sampling.

Walter Gilks and Carlo Berzuini. 2001. Following a moving target - Monte Carlo inference for dynamic Bayesian models. Journal of the Royal Statistical Society 63 (2001), 127-146. http://www.mathcs.emory.edu/~whalen/Papers/BNs/MonteCarlo-DBNs.pdf

Synopsis

Documentation

rmsmc Source #

Arguments

:: forall (m :: Type -> Type) a. MonadDistribution m 
=> MCMCConfig 
-> SMCConfig m 
-> SequentialT (TracedT (PopulationT m)) a

model

-> PopulationT m a 

Resample-move Sequential Monte Carlo.

rmsmcDynamic Source #

Arguments

:: forall (m :: Type -> Type) a. MonadDistribution m 
=> MCMCConfig 
-> SMCConfig m 
-> SequentialT (TracedT (PopulationT m)) a

model

-> PopulationT m a 

A variant of resample-move Sequential Monte Carlo where only random variables since last resampling are considered for rejuvenation.

rmsmcBasic Source #

Arguments

:: forall (m :: Type -> Type) a. MonadDistribution m 
=> MCMCConfig 
-> SMCConfig m 
-> SequentialT (TracedT (PopulationT m)) a

model

-> PopulationT m a 

Resample-move Sequential Monte Carlo with a more efficient tracing representation.