Copyright | (c) Adam Scibior 2015-2020 |
---|---|
License | MIT |
Maintainer | [email protected] |
Stability | experimental |
Portability | GHC |
Safe Haskell | None |
Language | Haskell2010 |
Control.Monad.Bayes.Inference.RMSMC
Description
Resample-move Sequential Monte Carlo (RM-SMC) sampling.
Walter Gilks and Carlo Berzuini. 2001. Following a moving target - Monte Carlo inference for dynamic Bayesian models. Journal of the Royal Statistical Society 63 (2001), 127-146. http://www.mathcs.emory.edu/~whalen/Papers/BNs/MonteCarlo-DBNs.pdf
Synopsis
- rmsmc :: forall (m :: Type -> Type) a. MonadDistribution m => MCMCConfig -> SMCConfig m -> SequentialT (TracedT (PopulationT m)) a -> PopulationT m a
- rmsmcDynamic :: forall (m :: Type -> Type) a. MonadDistribution m => MCMCConfig -> SMCConfig m -> SequentialT (TracedT (PopulationT m)) a -> PopulationT m a
- rmsmcBasic :: forall (m :: Type -> Type) a. MonadDistribution m => MCMCConfig -> SMCConfig m -> SequentialT (TracedT (PopulationT m)) a -> PopulationT m a
Documentation
Arguments
:: forall (m :: Type -> Type) a. MonadDistribution m | |
=> MCMCConfig | |
-> SMCConfig m | |
-> SequentialT (TracedT (PopulationT m)) a | model |
-> PopulationT m a |
Resample-move Sequential Monte Carlo.
Arguments
:: forall (m :: Type -> Type) a. MonadDistribution m | |
=> MCMCConfig | |
-> SMCConfig m | |
-> SequentialT (TracedT (PopulationT m)) a | model |
-> PopulationT m a |
A variant of resample-move Sequential Monte Carlo where only random variables since last resampling are considered for rejuvenation.
Arguments
:: forall (m :: Type -> Type) a. MonadDistribution m | |
=> MCMCConfig | |
-> SMCConfig m | |
-> SequentialT (TracedT (PopulationT m)) a | model |
-> PopulationT m a |
Resample-move Sequential Monte Carlo with a more efficient tracing representation.