Ap 2,1 - 1

The Complete Syntax for PAL

This appendix provides a complete listing of PAL's syntax,

The technique used here was developed in the form shown by James
Morris. (This section was last modified on 02/17/68 at 15:24 by

Evans.,)

Although It is possible to provide a complete, unambiguous

syntax for PAL using only the BNF notation used in the rest of
this manual, doing so is impractical: [t appears that in excess

of one hundred definitions would be necessary. In corder to
achieve a more concise (and therefore more wuseful) set of

productions, we proceed in two steps:

l. We first define a language Which we call PAL-1, using
the usual BNF notation. PAL-1 differs from PAL only in that
more parentheses are required in PAL~1,

2, We next extend PAL=-1 to PAL by adding a set of simple

context-dependent productions whose effect is to allow the
omission of parentheses in certain contexts.

A context free production is a BNF definition of the form that we

have been using. A context dependent production is one in which
there is not only a class name but also one or more terminal

symbols on the left side. We now give the complete syntax of
PAL-1, using the usual notation: '

Cprogram> ::= <E0> ¥ | { def <DO> } %

Expressions
- <EO0> = <KE2> where <00> | <E1>
C<E1D = let <V0> in <E1> | <E2>
CE2D = <KE3> { ; <E3> [T
<E3> = | <variable> : 3 <EW4>
CELD = 11 <BO> . <E3> | <E5>
CES5> = (k6> 1= <E5> | res <Eb> | <EGD

Ap 2.1 - 2 complete PAL Syntax

CE6D = KE7> { , <e1> |7
(ETD = goto <E8> | <EB>
CE8> = CE9> -> { <variable> : }. <E8>

! [<variable> : §{ <E8>

| <EYD

CE9> 1= (k9> % <variable> <E10> | <E10>
CE10 = <E10> aug <E11> | <E11>
CE11> = <E12> §{ logor <E12> {.
CE12D = <E13> § & <E13> 17
CE13)> = pot <tl4> | <E14>
CE14D = <KE14> § s | = | gr } <E15> | <E15)>
CE15> = <CE15> § + | = } <E16> | + <E16> | = <E16> | <E16>D
<E16) = CE16> { * | / 3 <E17> | <E17>
<E17> = <(E17> *x <E18)> | <E18>
<E18> = $ <E19> | val <E19> | <E19>
<E19) = (k19> <E20> | <E20>
CE20D = (<E0>) | <variable> | <quotation> | <numeric) | J]j

| true | false | nil | dummy

fin ons

<DO> ::= <015 within <00> | <D01>

(D1> ::= <KD2> § and <D2> }7
KD2> ::= rec 02> | <B2> = KE1> | <variable)> <B0O> = <tl>

| (<DO>)

Bound Variable Lis;g

(BO> ::= { <B1> } _
<B1l> ::= <variable> | () | (<B2>)

(B2> ::= <variable> { , <variable> ﬂf

The syntax just presented defines a <{program>. The three
classes left undefined by this syntax, <variable)>, <quotation)

and <numeric>, are assumed to be as defined on page 1.4/F-1. The
mark "%'" shown is assumed to be inserted automatically at the end

of each source file.

As remmarked earlier, any member of this class is also legal
PAL., As an example of the difference between PAL and PAL-1,

Complete PAL Syntax Ap 2.1 - 3

consider the following:

let X = 2

I N

Print (x * 3a)
where a = 3 + X

This is legal PAL but is not legal in PAL-1. Legal PAL=-1 would
be

let x = 2

i n

(Print (x * a)
where a = 3 + X

)

We now show in detail that this second sample is actually a legal
PAL-1 program, providing only that the terminator "%" is appended

to it. Note the following diagram:

let x = 2 in (Print { x * a) where a = 3 + x) &%
82 E20/ | | E20 l £20 E20] | 52 |e20 20l | |
e] k16 E17] - k15 e1e
D2 £E16 E15
KO | 1
r&191‘ (B0 | ~ D2
£19 .
L te l DO]
e _EO
| E20
| T -2 S
' £l
- e __ED R
{program> _ o

A few words about this notation are in order, Starting from the

left, we observe that x is a <variable> and is therefore in <B2).

(It is of course also true that x 1s k20>, but that fact is not
useful.) 2 is a <numeric> and thus in <tE20>. Anything that is

an <E20> is also an <tE1>, with the intervening steps omitted from

the diagram for the sake of brevity. Then '"<B2> = <E1>" is a

Ap 2.1 = & complete PAL Syntax

{D2>. It is left as an exercise for the reader to verify the

correctness of the rest of the derivation.

[t is instructive to note the effect of removing the
parentheses that surround the where expression. The parse would

proceed as far as

let <DU> in <E2> where <0D0>

and then to

let <D0> in <EO>

and be unable to proceed further.

We now define six sets: A0, Al, A2, A3, A4, A> and Ab.

AO ~ in |) | &[]
Al ~ A0 | and | within
A2 ~ Al | where
A3 ~ A2 | =1 , | aug | %
Ah ~ A3 | -> | & | logor
A5 ~ As | + | = | = | 1Is | gr
Finally we get to the critical part of this section: Six

context dependent productions. We first give them, and then we
explain their meaning:

CE1> AQ = <(E2> where <00> AQ
<el7> Al = Jet <00> in <E1> Al
<E17> A2 = 11 <BO> . <E3> A2
CE172> AS = goto <E8> A3

CE17> AL not <tl1l2> AL
(E17> A5 + <E14> A5 | - <El4> A>

We first note that ":::=" has been wused instead of "::=", to

indicate that these definitions are different from what we have
seen heretofor. We now proceed by example, showing that the PAL

program shown above is legal by this syntax. We have shown that

the expression can be parsed as

let <D0> in <E2> where <DU>

Complete PAL Syntax Ap 2.1 -~ 5

Now we make use of the first context dependent production. The

set AQ includes the right terminator "%, and the production
indicates that the text

CE2> where <00> AU

may be replaced by
<El> AQ
in the present instance, we then have

let <DO> in <El1l> %

and this clearty parses as a <program>;

