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2Instituto de Telecomunicações, Lisboa, Portugal

Keywords: Alzheimer Disease Prediction, Classification, Dimensionality Reduction, Explainability, Feature Selection,
Handwriting Tasks, Neurodegenerative Diseases.

Abstract: The progressive degeneration of nerve cells causes neurodegenerative diseases. For instance, Alzheimer and
Parkinson diseases progressively decrease the cognitive abilities and the motor skills of an individual. With-
out the knowledge for a cure, we aim to slow down their impact by resorting to rehabilitative therapies and
medicines. Thus, early diagnosis plays a key role to delay the progression of these diseases. The analysis of
handwriting dynamics for specific tasks is found to be an effective tool to provide early diagnosis of these dis-
eases. Recently, the Diagnosis AlzheimeR WIth haNdwriting (DARWIN) dataset was introduced. It contains
records of handwriting samples from 174 participants (diagnosed as having Alzheimer’s or not), performing
25 specific handwriting tasks, including dictation, graphics, and copies. In this paper, we explore the use of
the DARWIN dataset with dimensionality reduction, explainability, and classification techniques. We identify
the most relevant and decisive handwriting features for predicting Alzheimer. From the original set of 450
features with different groups, we found small subsets of features showing that the time spent to perform the
in-air movements are the most decisive type of features for predicting Alzheimer.

1 INTRODUCTION

Machine learning (ML) aims to solve problems by
learning a model from input data. The model is then
applied on a decision process. The foundations of this
decision-making are often opaque to the user, such
that one is unable to establish causal links such as:
“Model X made decision Y because of Z”. This may
be a problem in certain fields (e.g. medical, mili-
tary, and economic) where the consequences of an er-
ror can be harmful. Moreover, knowing the cause of
decision-making helps the research itself to analyze
the reasons behind each decision.

As an attempt to clarify algorithmic decision mak-
ing, the concept of explainable artificial intelligence
(XAI) arises. XAI techniques aim to provide explana-
tions for the decisions of a given ML model (Bastani
et al., 2017; Kim et al., 2018; Lakkaraju and Bastani,
2020; Lou et al., 2013a; Mothilal et al., 2020; Ribeiro
et al., 2016a). These explanations can take various
forms, such as visual, numerical, textual, or rule-
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based. They can be provided covering a global scope,
where the overall behavior of a model is described
as a whole, or a local scope, in which partial explana-
tions of the model’s behavior are reported, being valid
only for some or even a single decision. Extracting
explanations from models can be model-independent
(model-agnostic) or model-dependent (the extraction
method is specific to the model). Also there are trans-
parent models which are inherently interpretable and
do not require external components to provide expla-
nations.

Neurodegenerative diseases are caused by the pro-
gressive degeneration of nerve cells, being incurable
at this point. Alzheimer, Parkinson, and Huntington
are probably the most well-known neurodegenerative
diseases with consequences such as the cognitive abil-
ities and the motor skills of an individual are increas-
ingly affected over time. Without a cure, the medical
staff actions aim to slow down their impact by resort-
ing to rehabilitative therapies and medicines. Thus,
the early diagnosis of these diseases is still a key fac-
tor to delay their progression. This diagnosis can be
carried out by analyzing the way an individual per-
forms some specific writing tasks and actions.
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In this paper, we explore the use of dimensional-
ity reduction and XAI techniques to build ML models
for the prediction of the Alzheimer disease. The study
involves the use of the recently introduced Diagnosis
AlzheimeR WIth haNdwriting (DARWIN) dataset,
by Cilia et al. (2022), with the purpose of detecting
Alzheimer through the analysis of handwriting tasks.

The remainder of this paper is organized as fol-
lows. Section 2 briefly reviews related work for
Alzheimer’s disease detection and the techniques em-
ployed on our study. In section 3, the proposed ma-
chine learning approach to detect the Alzheimer dis-
ease through on-line writing is described as well as
the dataset used for this purpose. Section 4 presents
details about the undertaken experimental evaluation.
In section 5, we draw the main conclusions of our
study and pinpoint future directions.

2 RELATED WORK

In this section, we review Alzheimer’s disease (AD)
detection as well as to ML techniques considered in
our approach. In section 2.1, we refer to existing
data and initiatives for Alzheimer detection. Some
related work on the DARWIN dataset is described in
section 2.2. In section 2.3, we briefly review some
explainability techniques considered in our experi-
ments. Finally, section 2.4 addresses dimensionality
reduction with feature selection to improve classifica-
tion accuracy and leverage explainability.

2.1 Alzheimer Detection Initiatives

The detection of AD has been attracting the attention
of the ML research community. We now have dif-
ferent sources of data for the detection of this disease.
One of them is provided by Kumar and Shastri (2022).
This dataset consists of pre-processed magnetic reso-
nance images, to detect four different levels of demen-
tia: “Non Demented”, “Very Mild Demented”, “Mild
Demented”, and “Moderate Demented”.

The Alzheimer’s disease neuroimaging initia-
tive (ADNI) repository stores brain images and ge-
netic biometric data1. It provides several sets
of data to study and improve techniques for de-
tecting Alzheimer’s. Another repository based on
Alzheimer’s detection is open access series of imag-
ing studies (OASIS)2. In Koenig et al. (2020), we have
a volumetric biometric model to predict Alzheimer’s
that uses an instance of OASIS repository.

1https://adni.loni.usc.edu/data-samples
2https://sites.wustl.edu/oasisbrains

The national institute on aging genetics of
Alzheimer’s disease data storage site (NIAGADS)
repository provides datasets for Alzheimer’s disease
in different formats3.

2.2 The DARWIN Dataset

In Cilia et al. (2022), the authors present the DAR-
WIN dataset, and propose a ML approach for detect-
ing Alzheimer’s by analysing writing tasks that com-
prise the DARWIN dataset, available on the public
domain. This dataset was chosen for our study due
to its novelty and to the fact that it was considered
interesting and worth to explore, after analyzing the
existent literature. Moreover, it was easy to explore,
since image or gene expression data has a much larger
dimension and could be more difficult to process. In
addition to dimensionality, the size of other datasets
can reach 1.5 GB such as OASIS-1, being computa-
tionally demanding to analyze.

The DARWIN dataset contains handwriting sam-
ples from people affected by Alzheimer’s as well as
a control group, in a total of 174 participants. The
data was acquired during the execution of 25 specific
handwriting tasks, following a protocol for the early
detection of Alzheimer’s. These tasks address indi-
viduals performing dictation, graphic, and copy tasks,
and their performance is expressed on a total of 450
features. On the following, we briefly review recent
techniques that use the DARWIN dataset to predict
the AD.

In Azzali et al. (2024), the authors present a novel
approach based on vectorial genetic programming
(VE GP) to recognize the handwriting of AD patients.
VE GP is an improved version of GP to manage time
series directly. VE GP was applied to the DARWIN
dataset and the experimental results confirmed the ef-
fectiveness of the proposed approach in terms of clas-
sification performance, size, and simplicity.

A review of artificial intelligence (AI) methods
for AD diagnosis is presented in Bazarbekov et al.
(2024). The review introduces the importance of di-
agnosing AD accurately and the potential benefits of
using AI techniques and ML algorithms for this pur-
pose. The review is based on various state-of-the-art
data sources including MRI data, PET imaging, EEG
and MEG signals, handwriting data, among other data
sources.

Some of the authors that have proposed the DAR-
WIN dataset have further investigated the handwriting
of people affected by AD in Cilia et al. (2024). The
tasks proposed in handwriting datasets such as DAR-
WIN focused on different cognitive skills to elicitate

3https://www.niagads.org/home
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handwriting movements. It is believed that the mean-
ing and phonology of words to copy can compromise
writing fluency. In this context, these authors inves-
tigated the impact of word semantics and phonology
and how it affects the handwriting of people affected
by AD. Their results confirmed that AD harms brain
areas processing visual feedback.

In Erdogmus and Kabakus (2023), the authors
present a novel convolutional neural network (CNN)
as a cheap, fast, and accurate solution to detect AD.
The proposed CNN was built based on the following
process. The 1D features extracted from the analy-
sis of handwriting tasks of the DARWIN dataset were
transformed into 2D features, which were yielded into
the proposed novel model. Then, the model was
trained and evaluated on this dataset. Experimental
results show that the model obtained an accuracy as
high as 90.4%, which was higher than the accuracies
obtained by the state-of-the-art baselines.

In Cappiello and Caruso (2024), a Quantum ML
technique is applied to DARWIN dataset. Quantum
ML is a recent research field that combines quan-
tum information science and machine learning. The
authors also use the DARWIN dataset to test kernel
methods for the classification task and compare their
performances with the ones obtained via quantum ma-
chine learning methods. They found that quantum and
classical algorithms achieve similar performances and
in some cases quantum methods perform better.

In a recent work by Mitra and Rehman (2024), the
authors developed an ensemble ML model for anal-
ysis of handwriting kinetics (based on the DARWIN
dataset), with the stacking technique to integrate mul-
tiple base-level classifiers. The experimental evalua-
tion proved the high efficiency of the developed tech-
nique, where the proposed model surpasses all state-
of-the-art models based on the DARWIN dataset for
AD prediction.

2.3 Explainability Techniques

Recently, we have witnessed an increasing inter-
est on the use of explainability and interpretability
techniques (Bastani et al., 2017; Kim et al., 2018;
Lakkaraju and Bastani, 2020; Lou et al., 2013a;
Mothilal et al., 2020; Ribeiro et al., 2016b). In this
section, we briefly review explainability techniques.

The local interpretable model-agnostic explana-
tions) (LIME) (Ribeiro et al., 2016b) technique ex-
plains the predictions of any classifier with an inter-
pretable model, locally around the prediction. LIME
models the local neighborhood of a prediction, by per-
turbing an individual instance and by generating syn-
thetic data. Using LIME, one can interpret an ex-

planation in a similar way as a linear model. How-
ever, some explanations are occasionally unstable and
highly dependent on the perturbation process.

The SHapley Additive exPlanations (SHAP) ap-
proach is a game-theoretic method that explains the
output of any ML model. It resorts to optimal credit
allocation with local explanations using Shapley val-
ues (a concept developed in cooperative game the-
ory). The SHAP values provide insights into the im-
portance of the features (Scheda and Diciotti, 2022).

The explainable boosting machine (EBM) (Lou
et al., 2013a) is a generalized additive model with au-
tomatic interaction detection. An EBM model is of-
ten as accurate as state-of-the-art black-box models,
while remaining interpretable. EBM models are often
slower to train than other methods; however they are
compact and provide fast prediction.

The knowledge distillation (KD) approach, trans-
fers knowledge from a large model to a smaller
one (Bastani et al., 2017). The large model is the
black-box or teacher while the smaller one is the ex-
plainer or student. The student model is learned to
imitate the behavior of the teacher, while remaining
interpretable.

In Szepannek and Lübke (2022), we have the par-
tial dependence plots (PDP), which follows a model-
agnostic assessment strategy for each feature, evalu-
ating its effect on the model response. The degree
of model explainability extending the concept of ex-
plainability to the multiclass case is explored.

2.4 Dimensionality Reduction

In our approach, we explore the use of dimensionality
reduction. We resort to the k-fold feature selection
(KFFS) filter, proposed by Ferreira and Figueiredo
(2023). It is a filter feature selection (FS) method,
based on the idea that the discriminative power of a
feature is proportional to the number of times it is
chosen, on the k-folds over the training data, by some
unsupervised or supervised FS filter. KFFS is con-
trolled by two parameters: the number of folds k to
sample the training data; the threshold Th to assess
the percentage of choice of a feature by the filter on
the k-folds. Figure 1 depicts the input and output pa-
rameters of the KFFS algorithm, using a generic FS
filter denoted as @ f ilter, which is applied on k-folds
of the input data.

As filters to be used in KFFS, we consider the
Fisher ratio or Fisher score (Fisher, 1936). For the
i-th feature, the Fisher score is defined as

FiRi =

∣∣∣X (−1)
i −X (1)

i

∣∣∣√
var(Xi)(−1)+var(Xi)(1)

, (1)
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Figure 1: The k-fold feature selection (KFFS) algo-
rithm proposed by Ferreira and Figueiredo (2023).

where X (−1)
i , X (1)

i , var(Xi)
(−1), and var(Xi)

(1), are the
means and variances of feature Xi, for the patterns of
each class. The ratio measures how well each feature
alone separates the two classes (Fisher, 1936).

In this paper, we also consider the fast correlation-
based filter (FCBF), proposed by Yu and Liu (2003,
2004). FCBF starts by selecting a set of features
highly correlated with the class, with a correlation
value above a threshold. This correlation is assessed
by symmetrical uncertainty (SU) (Yu and Liu, 2003),
defined as

SU(Xi,X j) =
2I(Xi;X j)

H(Xi)+H(X j)
, (2)

where H(.) is the entropy defined by Shannon and
I(.) denotes the mutual information (MI) (Cover and
Thomas, 2006). SU is zero for independent random
variables and equal to one for deterministically de-
pendent ones. On its first step, FCBF identifies the
predominant features, the ones with higher correla-
tion with the class. In the second step, a redundancy
detection analysis finds redundant features among the
predominant ones. The set of redundant features is
processed, removing the redundant features keeping
the most relevant ones.

3 PROPOSED APPROACH

In this section, we describe our approach. Sec-
tion 3.1 describes our overall ML pipeline. The DAR-
WIN dataset preprocessing tasks are described in sec-
tion 3.2. The classification and explainability tech-
niques are decribed in section 3.3.

3.1 Machine Learning Pipeline

Our approach relies on the use of classification and
explainability techniques over the DARWIN dataset.
We aim to accurately detect Alzheimer’s disease and
to identify the most decisive features, following two
approaches:

• a model-agnostic explainer, depicted in Figure 2;

• a transparent explainer, shown in Figure 3.

Moreover, we apply these approaches on the original
dataset with d = 450 features as well as on the dimen-
sionality reduced dataset with m< d features, attained
by the KFFS algorithm, described in section 2.4.

3.2 Dataset Preprocessing

We started by analyzing the domain of values of each
column to identify whether it would be categorical or
numerical. Often, in the case of categorical features,
it is necessary to transform them into a numerical do-
main. On the DARWIN dataset, there was only a
single column with categorical values, the “ID” col-
umn to identify the individual being tested; it was de-
cided to discard this column, making a total of 450
features. The domain value of the classes from cat-
egorical to numeric is as follows: class H (Healthy)
labelled as 0, and class P (Patient) labelled as 1. After
the pre-processing stage, we proceeded with data par-
tition into a training set (80%) and a test set (20%).
We have also chosen the instance that will be used to
extract local explanations. The selected instance was
number 3 of the test set (belonging to class “0”).

We have carried out experiments with the original
dataset and other experiments with the dimensional-
ity reduced datasets, by using KFFS as described in
section 2.4. Our aim is to assess the impact of di-
mensionality reduction on the DARWIN dataset and
to analyze the results of explainability techniques on
the original and on the reduced space.

With the extraction of explanations we aim to find
the most relevant features and groups of features for
this dataset. These explanations will facilitate the
work of the clinical domain expert since each group
of features, or at least some groups, may exhibit cer-
tain values for different causes. For example, perhaps
a high “total time” may have different causes than a
high “pressure var”, which may pin point the region
of the brain that is affected, but ultimately this in-
terpretation should be carried by the domain expert
(medical doctor).

3.3 Machine Learning Techniques

As classification models, based on the existing litera-
ture, we have chosen well-known algorithms, such as
logistic regression (LR) (David W. Hosmer Jr., 2013),
random forest (RF) (Breiman, 2001), support vec-
tor machines (SVM) (Vapnik, 1999), and explainable
boosting machine (EBM) (Lou et al., 2013b). LR
learns a statistical model to estimate a single binary
dependent variable, coded by an indicator variable.
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Figure 2: System block diagram for model-agnostic explainers.

Figure 3: System block diagram for transparent explainers.

RF is an ensemble method that combines several de-
cision trees to build a classifier. SVM map the input
data to a high-dimensional feature space to classify
the data points.

As explainability techniques, we consider the use
of EBM, LIME, and SHAP, mentioned in section 2.3.
We also use EBM for classification purposes.

4 EXPERIMENTAL EVALUATION

In this section, we present details about the under-
taken experiments. Section 4.1 describes the experi-
mental settings followed by our approach and its eval-
uation. In section 4.2, we report the baseline (no
feature selection) classification results without and
with hyperparameter tunning. Section 4.3 addresses
local explanation results while section 4.4 presents
global explanation results. The dimensionality reduc-
tion evaluation results are reported in section 4.5. Fi-
nally, the discussion on the experimental results is the
topic of section 4.6.

4.1 Experimental Settings

The experiments were carried out on an AMD Ryzen
7 1700 Eight-Core Processor 3.00 GHz PC, 16 GB
RAM, with Radeon RX 580 Graphics card. The Oper-
ating System is Windows 10 Home. The source code
was written in the Python language and run using the
Jupyter Notebook. The ML models under evaluation
have the following hyperparameters:

. LR - solver=“lbfgs”, max iter=500, C=1;

. RF - n estimators=100, boostrap=True,
max features = “sqrt”;

. SVM - kernel=“linear”, C=1, deci-
sion function shape = “ovr”, gamma=“scale”;

. EBM - smoothing round=200, max bins = 1024,
cyclic progress=1;

As compared to the default parameter values, we
modified LR’s max iter from 100 to 500 (due to a
warning about insufficient number of iterations in or-
der for the algorithm to converge), and in the case of
SVM, we have changed the kernel from “rbf” to “lin-
ear”, which allowed for improved results.
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The evaluation metrics are: Accuracy, False-
positive rate, False-negative rate, Precision, Recall,
and F1-score (Rainio et al., 2024).

4.2 Baseline Classification Results

Table 1 reports the confusion matrices, on the test set
for all models while Table 2 presents the classification
metrics.

In Table 1, all classifiers achieved the same con-
fusion matrices except for SVM. This behavior can
also be seen on the metrics in Table 2. According
to these results the accuracy for LR, RF, SVM and
EBM was, respectively, 89%, 89%, 86% and 89%.
However, after calculating the confusion matrices for
one train/test partition we proceeded to calculating
the performance for 10 different partitions. The re-
sults can be seen in Table 2. In terms of overall
performance EBM was the leading classifier and RF
achieved very similar results with, respectively 89%
and 88% of hit rate, in addition, they achieved the
same FN rate and recall. Then LR in third place
with 79% of hit rate and in the last place was SVM
with 74%. These results show that the partition used
to generate the confusion matrices in Table 1, did
not represent the overall results, in the case of LR
and SVM, which have a considerable lower mean ac-
curacy. In spite of this difference the explanations
were extracted from the first step and according to
some tests made, they do not differ very much from
those extracted from a partition that resulted in met-
rics closer to the mean.

We have also performed GridSearchCV from
scikit-learn to find the best values for the hyperpa-
rameters of the classifiers, that would result in better
performance. We have found the following: for LR,
C=0.01, max iter=500, solver= “lbfgs”; for SVM ker-
nel=“rbf”, C=500, decision function shape=“ovr”,
gamma =“scale”; for EBM max bins=1024, smooth-
ing rounds=500, cyclic progress=0. The results ob-
tained with these hyperparameters, are also reported
in Table 2.

After hyperparameter tunning, all models achieve
improvements in metrics specially SVM, which now

Table 1: Confusion matrices for LR, RF, SVM, and EBM.

LR
14 1
3 17

RF
14 1
3 17

SVM
13 2
3 17

EBM
14 1
3 17

surpassed LR in terms of hit rate. EBM and RF also
improved performance having both a mean accuracy
of 91% being, once again, the classifiers with the su-
perior metrics.

4.3 Local Explainability Results

We now report the experimental results of the explain-
ability techniques, namely, LIME, SHAP, and EBM
local explainers. For the LIME explainer, one in-
stance from the test set was chosen to provide expla-
nations. We have chosen one instance from class “0”.
Figure 4 depicts the extraction of local explanations
for the SVM classifier using LIME. The graphical ex-
planation is organized into three components, from
left to right: probabilities of the classifier itself; im-
portance of the most relevant features; selected fea-
tures and their value. The feature considered as the
most important with a strong influence on class “1” is
“airtime 19”, indicating the time of the pen off the pa-
per for task 19. In general, it seems that an “air time”
high, even for other tasks, contributes to the positive
class, which seems to make sense, given that the in-
dividual would spend more time without performing
the task itself, which indicates difficulty. The second
most relevant feature is “total time19” yielding that
a shorter time to perform the task contributes to the
negative class. Another group of characteristics con-
sidered important was “pressure var”, with 2 appear-
ances among the 10 most important characteristics.
The less time an individual takes to perform a task, the
greater the dexterity and, therefore, the person will be
healthier.

We have also considered the SHAP explanations
for our models, on the same training data. Since
EBM is a transparent explainer, it is able of simul-
taneously carrying out the classification task and to
extract explanations. Also to make EBM’s compari-
son smoother, changes were made to the visualization
of this method to resemble that of SHAP and despite
their slight difference, they present the same type of
information, as depicted in Figure 5.

From Figure 5, we notice the difference in fidelity
as compared to LIME, given that the value of the de-
cision function, for this case, is always the same in
relation to the original model, as can be found di-
rectly below the titles. We observe a predominance
of the “pressure var” group of features, with 5 fea-
tures similar to the 9 most important ones. Another
interesting aspect is that the 3 most important fea-
tures in the case of SVM lean towards the positive
class, which can contribute to an increase in uncer-
tainty, since the true class is the negative one. EBM
found that the most important feature is the extension
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Table 2: Evaluation metrics on the baseline dataset (all features), for LR, RF, SVM, and EBM. The best result is in boldface.
No tunning Parameter tunning

Metric LR RF SVM EBM LR RF SVM EBM
Accuracy 0.79 ± 0.06 0.88 ± 0.07 0.74 ± 0.07 0.89 ± 0.06 0.81 ± 0.08 0.91 ± 0.04 0.82 ± 0.09 0.91 ± 0.04
False-positive rate 0.19 ± 0.10 0.12 ± 0.09 0.24 ± 0.10 0.09 ± 0.07 0.17 ± 0.09 0.08 ± 0.09 0.13 ± 0.11 0.07 ± 0.07
False-negative rate 0.23 ± 0.11 0.13 ± 0.10 0.27 ± 0.14 0.13 ± 0.08 0.22 ± 0.10 0.10 ± 0.06 0.23 ± 0.09 0.11 ± 0.07
Precision 0.82 ± 0.08 0.89 ± 0.08 0.77 ± 0.08 0.91 ± 0.06 0.83 ± 0.09 0.93 ± 0.07 0.87 ± 0.11 0.93 ± 0.06
Recall 0.77 ± 0.11 0.87 ± 0.10 0.73 ± 0.14 0.87 ± 0.08 0.78 ± 0.10 0.90 ± 0.06 0.77 ± 0.09 0.89 ± 0.07
F1-score 0.78 ± 0.07 0.88 ± 0.07 0.74 ± 0.09 0.89 ± 0.06 0.80 ± 0.09 0.91 ± 0.04 0.81 ± 0.09 0.91 ± 0.04

Figure 4: Local LIME explanations for the LR (top), RF (middle), and SVM (bottom) classifiers.
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Figure 5: Local explanations provided by SHAP for the SVM (top) classifier and EBM (bottom).

in y of task 20, contributing to the positive class. The
“num of pendown” group of features also seem to be
relevant. This also identifies importance in the total
time to perform a task and the time the pen is off the
paper. In general, the sum of the importance of char-
acteristics that are not considered most important has
a greater impact than the most important characteris-
tics individually, and it is not just the most relevant
characteristics that influence explanations, but rather
their complete set.

4.4 Global Explainability Results

We also present the application of SHAP and EBM as
global explainers, as illustrated in Figure 6.

The models that used SHAP to extract explana-
tions present two-color bars symbolizing each class.
In binary classification, the bars of both classes often
have the same dimension, that is, the features con-
tribute with equal intensity to both classes. The most
relevant features at a global level are similar to the
most relevant at a local level, with the group of char-
acteristics “pressure var” predominating as being the

most relevant with 13 appearances in both. In sec-
ond place in terms of number of appearances were
the groups “air time” and “total time” both with 3.
In SVM, the group “pressure var” also predominates
with 13 appearances, with the group “total time” ap-
pearing 5 times, ranking second in terms of frequency.

The predominant group for EBM is also “to-
tal time” with 7 appearances, although the most im-
portant feature is “air time23” which belongs to the
second most frequent group with 6 appearances.
Something that all models seem to agree on is that
the “total time” group has significant importance at
a global level, which is intuitive given that a per-
son with impaired motor capacity, which is one of
the symptoms of Alzheimer’s, will take more time to
complete tasks. Furthermore, tasks 17 and 19 appear
in all global explanations, which may indicate that
they have a greater ability to detect the presence of
this disease.
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Figure 6: Global explanations provided by SHAP, for the SVM (top) classifier and EBM (bottom).

4.5 Dimensionality Reduction

We now report on the experimental results of the
dimensionality reduction evaluation with KFFS. We
have applied FS as a pre-processing stage to the
dataset; the reduced dimensionality data is applied to
the pipelines depicted in Figure 2 and Figure 3.

We have considered KFFS with k = 10 folds and
Th ∈ {70,80,90,95}. As filters for KFFS, we have
FiR and FCBF techniques described in section 2.4;
we also considered the union and the intersection of
the feature subspaces provided by these filters to as-

sess on how differentiated these subspaces are (e.g.,
a small number of features in the intersection implies
large differentiation). Table 3 reports the reduced di-
mensionality of the dataset, denoted as m, with KFFS,
for the mentioned filters and thresholds. We observe
that the increase of the Th parameter yields a decrease
on the dimensionality of the dataset. These thresh-
old values achieve a significant degree of reduction
on the dimensionality of the dataset. Another impor-
tant aspect of these results is that the intersection of
the feature subspaces provided by both filters yields a
very reduced version of the dataset.
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Table 3: Dimensionality reduction with KFFS. The reduced
dimensionality m, from the original dimensionality d = 450.

KFFS Filter, k = 10
Th FiR FCBF Union Inter.
70 25 34 53 6
80 23 28 45 6
90 22 23 40 5
95 22 21 39 4

Table 4: Confusion matrices for EBM with: Th = 70, m =
34 features (left); Th = 80, m = 28 features (right).

EBM
14 1
2 18

EBM
14 1
2 18

Table 4 shows the confusion matrices, for the
EBM model with the KFFS(FCBF) filter with k = 10
and Th ∈ {70,80}. As compared to Table 1, we have
a false negative reduction from 3 to 2; as a conse-
quence, the accuracy of the classifier is improved.

Table 5 reports the values for the same metrics
as in Table 2, considering the reduced dimensionality
dataset. We observe that on the reduced dimension-
ality dataset, the EBM technique achieves the best re-
sults, with a large reduction of the number of features.

Table 6 reports a similar experimental evaluation
as in Table 5, using the KFFS(FiR) filter. The RF
and EBM classifiers perform very similarly, with 1%
difference on both cases.

Figure 7 depicts the local and global SHAP ex-
planations for the EBM classifier on KFFS(FCBF) re-
duced space (the best performing in Table 5). Figure 8
shows the local and global SHAP explanations for the
RF classifier on KFFS(FiR) reduced space (the best
performing in Table 6). For both cases, the “air time”
group of features is usually ranked at the top.

4.6 Discussion

The experimental evaluation in Cilia et al. (2022)
addresses all available features for the classification
task. It was found that, in almost all cases, the tasks
analyzed separately obtain a lower success rate than
considering all tasks. This may prove the relevance
of carrying out different tasks, as they test different
aspects relevant to the detection of Alzheimer’s. The
reported accuracy rates are 81.86 % (±7.20), 88.29 %
(±4.90), and 79.00 % (±7.55), for LR, RF, and SVM,
respectively. We got an improvement with the RF
and SVM classifiers, after parameter tuning. Regard-
ing sensitivity, the following values were presented:
84.17 %, 90.28 %, and 77.50 %. In this case, worse
results were achieved for LR, and similar results for

RF and SVM.
Using local and global explanation techniques on

the baseline version of the dataset (the original num-
ber of features), we were able to find consistent results
and to identify the groups of features that are the most
meaningful. Out of the set of 450 features, we have
conclude that the “air time”, “total time”, and ”pres-
sure var” groups of features seem to be carry the de-
cisive information for the detection and prediction of
Alzheimer disease.

The use of feature selection with the KFFS algo-
rithm yielded significant reduction on the dimension-
ality of the dataset, keeping or improving the classi-
fication performance. This implies that only a small
subset of features conveys information about the de-
tection of Alzheimer disease. The use of explainabil-
ity techniques on the reduced dimensionality dataset
has revealed that the “air time” group of features, that
is, the time that the patient takes to perform some
writing tasks is the most relevant to detect the disease.

5 CONCLUSIONS

Neurodegenerative diseases impose a progressive de-
crease of the patient cognitive and motor skills. Their
cause is yet to be determined, thus the early diag-
nosis is a key factor to delay their progression and
symptoms. In this context, ML and XAI approaches
have been proposed to devise diagnostic and predic-
tion systems.

In this paper, we described an explainable ML sys-
tem that is able to detect Alzheimer’s disease through
the analysis of specific handwriting tasks, with the
DARWIN dataset. We have confirmed and improved
previous results, showing the relevance of carrying
out different writing tasks, as they test several as-
pects relevant to the detection of Alzheimer’s. We
have assessed the effect of applying hyperparameter
fine-tuning and we noticed an improvement on the
models performance. Running fine-tuning optimiza-
tion, at the cost of running time, we have improved
the classification results, namely the false negative
rate. Moreover, we have also performed experiments
using different local and global explainability tech-
niques on the original dataset and on the reduced di-
mensionality dataset. From these experiments, we
identify the groups of features that are the most de-
cisive to Alzheimer detection from handwriting. In
detail, from the original set of 450 features, we found
that the time spent to perform the in-air movements,
plays a decisive role at predicting Alzheimer.

As future work, we aim to fine tune the parameters
of feature selection techniques, to improve the classi-
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Table 5: Evaluation metrics on the reduced dimensionality dataset, for LR, RF, SVM, and EBM. We use KFFS(FCBF) filter
with k = 10 and Th ∈ {70,80}. The best result is in boldface.

KFFS(FCBF), k = 10 Th = 70,m = 34 Th = 80,m = 28
Metric LR RF SVM EBM LR RF SVM EBM
Accuracy 0.85 ± 0.07 0.85 ± 0.07 0.76 ± 0.07 0.89 ± 0.05 0.80 ± 0.07 0.86 ± 0.04 0.77 ± 0.08 0.89 ± 0.04
False-positive rate 0.18 ± 0.09 0.20 ± 0.11 0.19 ± 0.06 0.11 ± 0.07 0.21 ± 0.10 0.20 ± 0.08 0.20 ± 0.07 0.13 ± 0.06
False-negative rate 0.13 ± 0.11 0.11 ± 0.09 0.29 ± 0.11 0.11 ± 0.09 0.20 ± 0.09 0.09 ± 0.07 0.26 ± 0.11 0.08 ± 0.07
Precision 0.84 ± 0.07 0.83 ± 0.08 0.80 ± 0.07 0.90 ± 0.06 0.81 ± 0.08 0.84 ± 0.05 0.80 ± 0.07 0.88 ± 0.05
Recall 0.87 ± 0.11 0.89 ± 0.09 0.71 ± 0.11 0.89 ± 0.09 0.80 ± 0.09 0.91 ± 0.07 0.74 ± 0.11 0.92 ± 0.07
F1-score 0.85 ± 0.07 0.86 ± 0.06 0.75 ± 0.08 0.89 ± 0.06 0.80 ± 0.07 0.87 ± 0.04 0.77 ± 0.09 0.90 ± 0.05

Table 6: Evaluation metrics on the reduced dimensionality dataset, for LR, RF, SVM, and EBM. We use KFFS(FiR) filter
with k = 10 and Th ∈ {70,80}. The best result is in boldface.

KFFS(FiR), k = 10 Th = 70,m = 25 Th = 80,m = 23
Metric LR RF SVM EBM LR RF SVM EBM
Accuracy 0.77 ± 0.08 0.83 ± 0.06 0.76 ± 0.05 0.84 ± 0.06 0.77 ± 0.08 0.82 ± 0.06 0.76 ± 0.05 0.83 ± 0.06
False-positive rate 0.22 ± 0.12 0.21 ± 0.11 0.15 ± 0.10 0.17 ± 0.10 0.22 ± 0.13 0.21 ± 0.11 0.16 ± 0.08 0.18 ± 0.10
False-negative rate 0.24 ± 0.08 0.13 ± 0.06 0.33 ± 0.11 0.15 ± 0.08 0.25 ± 0.08 0.15 ± 0.05 0.31 ± 0.09 0.17 ± 0.07
Precision 0.80 ± 0.11 0.83 ± 0.08 0.84 ± 0.09 0.85 ± 0.08 0.80 ± 0.11 0.82 ± 0.08 0.83 ± 0.07 0.84 ± 0.08
Recall 0.76 ± 0.08 0.87 ± 0.06 0.67 ± 0.11 0.85 ± 0.08 0.75 ± 0.08 0.85 ± 0.05 0.69 ± 0.09 0.83 ± 0.07
F1-score 0.77 ± 0.07 0.84 ± 0.05 0.74 ± 0.07 0.84 ± 0.06 0.77 ± 0.07 0.83 ± 0.05 0.75 ± 0.06 0.83 ± 0.05

Figure 7: Local and global SHAP explanations for the EBM classifier on KFFS(FCBF) reduced space.

Figure 8: Local and global SHAP explanations for the RF classifier on KFFS(FiR) reduced space.

fication metrics minimizing the false negatives as well
as the number of features.
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