Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Oriented quasi-domain structure of helical spin polymer prepared by electrochemical polymerization in cholesteric liquid crystal under magnetic field, showing helical stripes magnetic domain

Masashi Otaki<sup>a</sup>, Shigeki Nimori<sup>b</sup>, and Hiromasa Goto<sup>a,\*</sup>

<sup>a</sup>Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba,

Tsukuba, Ibaraki 305-8573, Japan

<sup>b</sup>National Institute for Materials Science, Tsukuba, Ibaraki, 305-0003, Japan

\*Correspondence to H. Goto, e-mail: gotoh@ims.tsukuba.ac.jp

| p2      | Scheme S1      | Synthetic route of monomers                                     |
|---------|----------------|-----------------------------------------------------------------|
| р3–р8   |                | Synthetic procedure of monomers                                 |
| P9-p19  | Figure S1–S14  | <sup>1</sup> H NMR of monomers                                  |
| P20     | Figure S15     | FT-IR spectra of monomers                                       |
| P21     | Figure S16     | CD and UV-vis absorption spectra of the polymer films           |
| Р22-р23 | Figure S17–S18 | POM images of polymer films                                     |
| P23     | Figure S19     | UV-vis absorption spectra of magnetically aligned polymer films |
| P24     | Figure S20–S21 | CV measurement of polymer films                                 |
| P26     | Figure S22     | In-situ optical absorption spectra at different voltage         |
| S27     | Figure S23     | Plausible helical structure of polymer films                    |
| P27     |                | Reference                                                       |



**Scheme S1**. Synthetic route of monomers. THF: tetrahydrofuran. *n*-BuLi: *n*-butyllithium. NBS: *N*-Bromosuccinimide. Ni(dppp)Cl<sub>2</sub>: [1,3-Bis(diphenylphosphino)propane]nickel(II) dichloride. Pd(PPh<sub>3</sub>)<sub>4</sub>: tetrakis(triphenylphosphine)palladium(0). DMF: *N*,*N*-dimethylformamide.

#### Synthesis of 5-trimethyltin-thiophene:

This synthesis was carried out according to a previously reported method<sup>[1]</sup>. Quantities used: 2-Bromothiophene (3.0 g, 18.4 mmol), *n*-butyllithium (11.5 mL, 18.4 mmol), trimethyltin chloride (3.67 g, 18.4 mmol), THF (70 mL). The crude product (brown liquid) was used in the next step without purification.

#### Synthesis of 5-trimethyltin-2,2'-bithiophene:

This synthesis was carried out according to a previously reported method<sup>[2]</sup>. Quantities used: Bithiophene (4.5 g, 27.07 mmol), *n*-butyllithium (17 mL, 27.07 mmol), trimethyltin chloride (5.39 g, 27.07 mmol), THF (50 mL). The crude product (brown liquid) was used in the next step without purification.

#### Synthesis of (2,6-di-tert-butyl-4-bromophenoxy)trimethylsilane:

This synthesis was carried out according to a previously reported method<sup>[3]</sup>. Quantities used: 2,6-Di-*tert*-butyl-4-bromophenol (5.01 g, 17.6 mmol), *n*-butyllithium (16.5 mL, 26.3 mmol, 1.6 M in hexane), chlorotrimethylsilane (3.55 g, 32.7 mmol), THF (70 mL). Yield = 92% (5.77 g, 16.1 mmol, white solid). <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>; TMS)  $\delta$  0.418 (s, 9H), 1.394 (s, 18H), 7.324 (s, 2H).

#### Synthesis of 3-(3,5-di-*tert*-butyl-4-trimethylsiloxyphenyl)thiophene:

This synthesis was carried out according to a previously reported method<sup>[4,5]</sup>. Quantities used: Mg (0.31 g, 12.8 mmol), (2,6-di-*tert*-butyl-4-bromophenoxy)trimethylsilane (3.50 g, 9.8 mmol), 3-bromothiophene (1.95 g, 11.9 mmol), [1,3-bis(diphenylphosphino)propane]nickel(II) chloride (NiCl<sub>2</sub>(dppp), 0.044 g, 0.081 mmol), THF (30 mL). Yield = 45% (2.07 g, 5.75 mmol, white solid). <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>; TMS)  $\delta$  0.453 (s, 9H), 1.47 (s, 18H), 7.36 (m, 3H), 7.493 (s, 2H).

#### Synthesis of 3-(3,5-di-tert-butyl-4-hydoxyphenyl)thiophene (1TP):

Under argon atmosphere, 3-(3,5-di-tert-butyl-4-trimethylsiloxyphenyl)thiophene (100 mg , 0.277 mmol) and tetrabutylammonium fluoride (1 M in THF, 0.55 mL, 0.55 mmol) in THF (6 mL) were added to an over-dried 50 mL round-bottom flask equipped with a stir-bar and stirred for 4 h at room temperature. After that, the reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with water and dried over MgSO<sub>4</sub>. The solvent was evaporated. The product was purified by column chromatography (silica gel, eluent: hexane) to afford the desired product (64.0 mg, 0.222 mmol, Yield: 80%, white solid). <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>; TMS)  $\delta$  1.485 (s, 18H), 5.211 (s, 1H), 7.286–7.298 (q, 1H, *J* = 1.6 Hz), 7.307–7.325 (dd, 1H, *J* = 2.4 Hz), 7.337–7.358 (q, 1H, *J* = 2.8 Hz), 7.382 (s, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  153.4, 143.5, 136.3, 127.6, 126.7, 125.9, 123.6, 118.8, 34.5, 30.4. LC-MS (m/z): [M + H]<sup>+</sup> calcd. for C<sub>18</sub>H<sub>24</sub>OS, 288.45; found, 289.6.

#### Synthesis of 2,5-dibromo-3-(3,5-di-tert-butyl-4-trimethylsiloxyphenyl)thiophene:

This synthesis was carried out according to a previously reported method<sup>[4,5]</sup>. Quantities used: 3-(3,5-Di-tert-butyl-4-trimethylsiloxyphenyl)thiophene (2.73 g, 7.58 mmol), *n*-bromosuccinimide (NBS, 2.97 g, 16.68 mmol), DMF (50 mL). Yield = 38% (1.51 g, 2.91 mmol, white solid). <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>; TMS)  $\delta$  0.511 (s, 9H), 1.511 (s, 18H), 7.099 (m, 1H), 7.49 (s, 2H).

# Synthesis of 3'-(3,5-di-*tert*-butyl-4-trimethylsiloxyphenyl)-2,2':5',2"-terthiophene:

Under argon atmosphere, 2,5-dibromo-3-(3,5-di-*tert*-butyl-4-trimethylsiloxyphenyl)thiophene (919 mg, 1.77 mmol) and 5-trimethyltin-thiophene (1314 mg, 5.33 mmol) in toluene (8 mL) were added to an over-dried 50 mL round-bottom flask equipped with a stir-bar and stirred for 0.5 h. Then,

tetrakis(triphenylphosphine)palladium(0) (51.0 mg, 0.0443 mmol) was added to this solution and stirred under reflux at 100 °C for 48 h. After that, the reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with water and dried over MgSO<sub>4</sub>. The solvent was evaporated. The product was purified by column chromatography (silica gel, eluent: hexane) to afford the desired product (67.4 mg, 0.128 mmol, Yield: 7.3%, light yellow solid). <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>; TMS)  $\delta$  0.451

(s, 9H), 1.389 (d, 18H, *J* = 11.6 Hz), 6.913–7.043 (m, 4H), 7.101 (quartet, 1H, *J* = 3.3 Hz), 7.175 (d, 2H, *J* = 4.8 Hz), 7.301 (s, 2H).

#### Synthesis of 3'-(3,5-di-*tert*-butyl-4-phenoxy)-2,2':5',2"-terthiophene (3TP):

Under argon atmosphere, 3'-(3,5-di-*tert*-butyl-4-trimethylsiloxyphenyl)-2,2':5',2"-terthiophene (67.4 mg , 0.128 mmol) and tetrabutylammonium fluoride (1 M in THF, 0.25 mL, 0.25 mmol) in THF (3 mL) were added to an over-dried 50 mL round-bottom flask equipped with a stir-bar and stirred for 4 h at room temperature. After that, the reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with water and dried over MgSO<sub>4</sub>. The solvent was evaporated. The product was purified by column chromatography (silica gel, eluent: hexane) to afford the desired product (35 mg, 0.0773 mmol, Yield: 60%, light yellow solid). <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>; TMS)  $\delta$  1.445 (d, 18H, *J* = 10.4 Hz), 5.308 (s, 1H), 6.952 (dd, 1H, *J* = 3.6 Hz), 6.989 (d, 1H, *J* = 2.9 Hz), 7.03 (d, 1H, *J* = 4 Hz), 7.057 (m, 1H), 7.113 (tri, 1H, *J* = 1.5 Hz), 7.154 (d, 2H, *J* = 3.1 Hz), 7.191 (s, 2H), 7.239 (s, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  153.5, 140.6, 136.2, 134.6, 128.2, 127.8, 126.6, 126.5, 124.6, 124.2, 123.6, 123.2, 34.5, 30.4. LC-MS (m/z): [M + H]<sup>+</sup> calcd. for C<sub>26</sub>H<sub>28</sub>OS<sub>3</sub>, 452.69; found, 453.8.

# Synthesis of 3"-(3,5-di-*tert*-butyl-4-trimethylsiloxyphenyl)-2,2':5',2":5",2":5",2"''-quinquethiophene:

Under argon atmosphere, 2,5-dibromo-3-(3,5-di-*tert*-butyl-4-trimethylsiloxyphenyl)thiophene (162 mg, 0.313 mmol) and 5-trimethyltin-2,2'-bithiophene (226 mg, 0.688 mmol) in toluene (3 mL) were added to an over-dried 50 mL round-bottom flask equipped with a stir-bar and stirred for 0.5 h. Then, tetrakis(triphenylphosphine)palladium(0) (7.23 mg, 0.00626 mmol) was added to this solution and stirred under reflux at 75 °C for 24 h. After that, the reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with water and dried over MgSO<sub>4</sub>. The solvent was evaporated. The product was purified by column chromatography (silica gel, eluent: hexane) to afford the desired product (22 mg, 0.0319 mmol, Yield: 10%, dark yellow solid). <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>; TMS)  $\delta$  0.454 (s, 9H), 1.407 (s, 18H), 6.944 (d, 1H, *J* = 4.0 Hz), 6.973 (dd, 1H, *J* = 1.6 Hz), 6.996 (d, 1H, *J* = 4.0 Hz), 7.036 (m, 2H), 7.116 (dd, 2H, *J* = 3.33 Hz), 7.163 (s, 1H), 7.187 (m, 2H), 7.235 (dd, 1H, *J* = 1.87 Hz), 7.301 (s, 2H).

# Synthesis of 3"-(3,5-di-*tert*-butyl-4-phenoxy)-2,2':5',2":5",2":";2"''-quinquethiophene (5TP):

Under argon atmosphere, 3"-(3,5-di-*tert*-butyl-4-trimethylsiloxyphenyl)-2,2':5',2":5",2"':5"',2"''quinquethiophene (22 mg , 0.0319 mmol) and tetrabutylammonium fluoride (1 M in THF, 0.1 mL, 0.1 mmol) in THF (3 mL) were added to an over-dried 50 mL round-bottom flask equipped with a stir-bar and stirred for 4 h at room temperature. After that, the reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with water and dried over MgSO<sub>4</sub>. The solvent was evaporated. The product was purified by column chromatography (silica gel, eluent: hexane) to afford the desired product (15.7 mg, 0.0255 mmol, Yield: 80%, dark yellow solid). <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>; TMS)  $\delta$  1.445 (s, 18H), 5.304 (s, 1H), 6.952 (d, 1H, *J* = 3.6 Hz), 6.989 (dd, 1H, *J* = 2.9 Hz), 7.006 (d, 1H, *J* = 4 Hz), 7.037 (dd, 1H, *J* = 2.9 Hz), 7.061 (dd, 1H, *J* = 1.5 Hz), 7.116 (dd, 2H, *J* = 3.1 Hz), 7.144 (s, 1H), 7.192 (m, 2H), 7.236 (m, 1H), 7.242 (s, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  153.9, 140.8, 137.2, 136.0, 134.6, 128.0, 127.9, 127.2, 126.9, 126.5, 126.2, 124.7, 124.5, 124.4, 123.9, 123.5, 123.4, 34.5, 30.4. LC-MS (m/z): [M + H]<sup>+</sup> calcd. for C<sub>34</sub>H<sub>32</sub>OS<sub>5</sub>, 616.94; found, 618.0.

#### Synthesis of 3-(3,5-di-*tert*-butyl-phenyl)thiophene:

Under argon atmosphere, Mg (0.542 g, 22.3 mmol) in THF (5 mL) was added to an over-dried 100 mL round-bottom flask equipped with a stir-bar. Then, this solution was slowly added dropwise to 1-bromo-3,5-di-*tert*-butyl-benzene (5.00 g, 18.6 mmol) in THF (5 mL) and stirred for 6 h at room temperature. After disappearance of Mg, this grignard suspension was added to a mixture of 3-bromothiophene (3.03 g, 18.6 mmol) and [1,3-bis(diphenylphosphino)propane]nickel(II) chloride (NiCl<sub>2</sub>(dppp), 0.065 g, 0.120 mmol) in THF (10 mL) and stirred under reflux for 12 h. When the reaction is completed, the reaction mixture poured into an aqueous sodium bicarbonate (NaHCO<sub>3</sub>) and extracted with ethyl acetate. The organic layer was washed with water and dried over MgSO<sub>4</sub>. The solvent was evaporated. The product was purified by column chromatography (silica gel, eluent: hexane) to afford the desired product (3.54 g, 13.0 mmol, Yield: 70%, colorless liquid). <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>; TMS) δ 1.409 (s, 18H), 7.394–7.433 (m, 3H, 2,4,5-*H*(thiophene)), 7.449–7.467 (m, 3H, 2,4,6-*H*(benzene)).

#### Synthesis of 2,5-dibromo-3-(3,5-di-tert-butyl-phenyl)thiophene

Under argon atmosphere, 3-(3,5-di-*tert*-butyl-phenyl)thiophene (3.50 g, 12.9 mmol) in DMF (15 mL) was added to an over-dried 100 mL round-bottom flask equipped with a stir-bar. After that, NBS (5.71 g, 32.1 mmol) was slowly added to the solution at 0 °C and stirred 24 h at room temperature. Then, the mixture was poured into an aqueous sodium bicarbonate (NaHCO<sub>3</sub>) and extracted with ethyl acetate. The organic layer was washed with water and dried over MgSO<sub>4</sub>. The solvent was evaporated. The product was purified by column chromatography (silica gel, eluent: hexane) to afford the desired product (3.58 g, 8.32 mmol, Yield: 65%, white solid). <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>; TMS)  $\delta$  1.375 (s, 18H), 7.055 (s, 1H), 7.344 (d, 2H, *J* = 1.6 Hz), 7.434 (t, 1H, *J* = 1.8 Hz).

# Synthesis of 3"-(3,5-di-*tert*-butyl-phenyl)-2,2':5',2":5",2":5",2"''- quinquethiophene (5TB):

Under argon atmosphere, 2,5-dibromo-3-(3,5-di-*tert*-butyl-phenyl)thiophene (1.00 g, 2.32 mmol) and 5-trimethyltin-2,2'-bithiophene (1.68 g, 5.11 mmol) in toluene (10 mL) were added to an over-dried 100 mL round-bottom flask equipped with a stir-bar and stirred for 0.5 h. Then,

tetrakis(triphenylphosphine)palladium(0) (53.0 mg, 0.0465 mmol) was added to this solution and stirred under reflux at 75 °C for 24 h. After that, the reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with water and dried over MgSO<sub>4</sub>. The solvent was evaporated. The product was purified by column chromatography (silica gel, eluent: hexane) to afford the desired product (145 mg, 0.241 mmol, Yield: 10%, dark yellow solid). <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>; TMS)  $\delta$  1.334 (s, 18H), 6.917 (d, 1H, *J* = 3.6 Hz), 6.982 (m, 2H), 7.041 (m, 2H), 7.122 (dd, 2H, *J* = 3.7 Hz), 7.166 (s, 1H), 7.192 (m, 2H), 7.237 (dd, 1H, *J* = 2.1 Hz), 7.278 (d, 2H, *J* = 2 Hz), 7.422 (t, 1H, *J* = 1.8 Hz). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  151.0, 140.9, 137.3, 134.8, 134.7, 128.0, 127.2, 127.0, 124.7, 124.6, 124.5, 124.4, 123.9, 123.8, 123.7, 123.6, 121.7, 35.0, 31.5. LC-MS (m/z): [M + H]<sup>+</sup> calcd. for C<sub>34</sub>H<sub>32</sub>S<sub>5</sub>, 600.94; found, 602.0.



Figure S1. <sup>1</sup>H NMR data for (2,6-di-*tert*-butyl-4-bromophenoxy)trimethylsilane in CDCl<sub>3</sub>, at 400 MHz.



Figure S2. <sup>1</sup>H NMR data for 3-(3,5-di-*tert*-butyl-4-trimethylsiloxyphenyl)thiophene in CDCl<sub>3</sub>, at 400 MHz.



Figure S3. <sup>1</sup>H NMR data for 3-(3,5-di-*tert*-butyl-4-hydoxyphenyl)thiophene (1TP) in CDCl<sub>3</sub>, at 400 MHz.



Figure S4. <sup>13</sup>C NMR data for 3-(3,5-di-*tert*-butyl-4-hydoxyphenyl)thiophene (1TP) in CDCl<sub>3</sub>, at 100 MHz.



**Figure S5**. <sup>1</sup>H NMR data for 2,5-dibromo-3-(3,5-di-*tert*-butyl-4-trimethylsiloxyphenyl)thiophene in CDCl<sub>3</sub>, at 400 MHz.



**Figure S6**. <sup>1</sup>H NMR data for 3'-(3,5-di-*tert*-butyl-4-trimethylsiloxyphenyl)-2,2':5',2"-terthiophene in CDCl<sub>3</sub>, at 400 MHz.



**Figure S7**. <sup>1</sup>H NMR data for 3'-(3,5-di-*tert*-butyl-4-phenoxy)-2,2':5',2"-terthiophene (3TP) in CDCl<sub>3</sub>, at 400 MHz.



**Figure S8**. <sup>1</sup>H NMR data for 3''-(3,5-di-*tert*-butyl-4-trimethylsiloxyphenyl)-2,2':5',2'':5'',2''':5''',2''''- quinquethiophene in CDCl<sub>3</sub>, at 400 MHz.



**Figure S9**. <sup>1</sup>H NMR data of 3''-(3,5-di-*tert*-butyl-4-phenoxy)-2,2':5',2'':5'',2''':5''',2''''- quinquethiophene (5TP) in CDCl<sub>3</sub>, at 400 MHz.



**Figure S10**. <sup>13</sup>C NMR data of 3''-(3,5-di-*tert*-butyl-4-phenoxy)-2,2':5',2'':5'',2''':5''',2''''- quinquethiophene (5TP) in CDCl<sub>3</sub>, at 100 MHz.



Figure S11. <sup>1</sup>H NMR data for 3-(3,5-di-*tert*-butyl-phenyl)thiophene in CDCl<sub>3</sub>, at 400 MHz.



Figure S12. <sup>1</sup>H NMR data for 2,5-dibromo-3-(3,5-di-*tert*-butyl-phenyl)thiophene in CDCl<sub>3</sub>, at 400 MHz.



**Figure S13**. <sup>1</sup>H NMR data for 3''-(3,5-di-*tert*-butyl-phenyl)-2,2':5',2'':5'',2''':5''',2''''-quinquethiophene (5TB) in CDCl<sub>3</sub>, at 400 MHz.



**Figure S14**. <sup>13</sup>C NMR data for 3"-(3,5-di-*tert*-butyl-phenyl)-2,2':5',2":5",2"':5"',2"''-quinquethiophene (5TB) in CDCl<sub>3</sub>, at 100 MHz.



Figure S15. FT-IR spectra of 1TP, 5TP, 5TB and 3TP in KBr method.



**Figure S16**. CD (top) and UV–vis optical absorption (bottom) spectra of (a)  $p5TP_{(0T)}$ , (b)  $p5TB_{(0T)}$  reduced by hydrazine vapor.



**Figure S17**. POM images of electrochemically prepared polymer films in CLC under magnetic field. p5TB prepared by electrochemical polymerization in CLC under magnetic field of (a) 4T ( $p5TB_{(4T)}$ ) and (d) 6T ( $p5TB_{(6T)}$ ). (b) p3TP prepared by electrochemical polymerization in CLC under magnetic field of 4T ( $p3TP_{(4T)}$ ). (c) p5TP prepared by electrochemical polymerization in CLC under magnetic field of 6T ( $p5TP_{(6T)}$ ).



Figure S18. Conceptual image of the helical periodic structure of the CLC.



**Figure S19**. UV–vis spectra of (a) p5TP and (b) p3TP prepared in electrochemical polymerization in CLC under magnetic field (black line: 0T, purple line: 4T, blue line: 6T).



**Figure S20**. CV results for a  $p3TP_{(0T)}$  film on ITO glass using 0.1M TBAP-acetonitrile solution at scan rates of 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 and 200 mV/s.



**Figure S21**. The redox property of  $p3TP_{(0T)}$  films evaluated by plotting the intensity of the signal at each scan rate.



**Figure S22**. *In-situ* optical absorption spectra for a  $p3TP_{(0T)}$  film in 0.1 M TBAP-acetonitrile solution at different voltages. UV–vis optical absorption spectra of a  $p3TP_{(0T)}$  film during oxidation (upper) and reduction (bottom) between 1.0 V and 0 V at 0.1 V steps.



**Figure S23**. Plausible hierarchical helical structure of the polymer film. The polymer film synthesized in this study may have an interchain helical stacking structure and an intra-chain helical spin structure.

# Reference

(1) Pankow, R. M.; Gobalasingham, N. S.; Munteanu, J. D.; Thompson, B. C. Preparation of semi-alternating conjugated polymers using direct arylation polymerization (DArP) and improvement of photovoltaic device performance through structural variation. *J. Polym. Sci.: Part A: Polym Chem* **2017**, 55, 3370–3380.

(2) Li, J. Y.; Chen, C. Y.; Lee, C. P.; Chen, S. C.; Lin, T. H.; Tsai, H. H.; Ho, K. C.; Wu, C. G. Unsymmetrical squaraines incorporating the thiophene unit for panchromatic dye-sensitized solar cells. *Org. Lett* **2010**, 12, 5454–5457.

(3) Gierke, W.; Harrer, W.; Kibste, B.; Kurreck, H.; Reusch, J. Über Galvinole und Galvinoxyle, II EPR-HFS-und elektronen-spektroskopische Untersuchung von Galvinoxyl-Mehrspinsystemen. *Zeitschrift. für. Naturforschung. B* **1976**, 31, 965–973. (4) Yamamoto, T.; Hayashi, H.  $\pi$ -Conjugated soluble and fluorescent poly (thiophene-2, 5-diyl) s with phenolic, hindered phenolic and p-C6H4OCH3 substituents. Preparation, optical properties, and redox reaction. *J. Polym. Sci.: Part A: Polym. Chem. Ed* **1997**, 35, 463–474.

(5) Hayashi, H.; Yamamoto, T. Synthesis of regioregular  $\pi$ -conjugated poly (thienyleneethynylene) with a hindered phenolic substituent. *Macromolecules* **1997**, 30, 330–332.