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Summary 
We introduce InterpretML, an open source Python toolkit for explaining black-box AI systems and 
training intelligible models. When AI systems are used in ways that impact people’s lives, it is critically 
important that people understand the behavior of those systems. InterpretML helps users gain a better 
understanding of their model's overall behavior (“global explanation”), understand the reasons behind 
individual predictions (“local explanation”), and debug their model’s predictions by exploring what 
similar data instances have received different outcomes. InterpretML incorporates state-of-the-art 
machine learning intelligibility techniques developed by Microsoft or well-proven third-party libraries. It 
creates a common API across the integrated libraries, making it possible to call and compare different 
intelligibility methods with the same set of function calls and data structures. InterpretML also applies 
optimizations that enable running real-world datasets at scale. 

InterpretML’s built-in interactive and exploratory visualization dashboard gives data scientists a wide 
range of insights about their dataset, model performance, and model explanations. InterpretML includes 
a new interpretability algorithm—the Explainable Boosting Machine, which is a highly intelligible and 
explainable—“glassbox”—model, with accuracy that’s comparable to machine learning methods like 
random forests and boosted trees. InterpretML is a community-driven initiative and invites further 
expansion by researchers and data scientists.  

 

Introduction: What is intelligibility in AI? 
Transparency is one of Microsoft’s six AI principles. Intelligibility is an important aspect of transparency 
and means that people should be able to understand, monitor, and respond to the technical behavior of 
AI systems. In machine learning circles, the term intelligibility is often, though not always, used 
interchangeably with the term interpretability. 

When AI systems are used in ways that impact people’s lives, it is critically important that people 
understand the behavior of those systems. In machine learning circles, intelligibility—or 
interpretability—means that people should be able to understand, monitor, and respond to the 
technical behavior of AI systems. It is a fundamentally human-centric concept. In practice, achieving 
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intelligibility can be complex and highly dependent on a host of variables and human factors, precluding 
anything resembling a one-size-fits-all approach. It is an area of cutting-edge interdisciplinary research, 
building on ideas from machine learning, psychology, human-computer interaction, and design.  

The need for intelligibility can arise in an almost limitless range of scenarios and is a tool for achieving 
human objectives, such as ensuring the fairness of decisions or the reliability and safety of AI systems 
operating in physical environments. Intelligibility is critical at both stages of a machine learning life cycle; 
training time (pre-deployment) and post-deployment. The following examples illustrate a few of the 
many diverse reasons for intelligibility during training time: 

• Intelligibility can improve the robustness of an AI system by making it easier to identify and fix 
bugs. Suppose an engineer believes that time of day should be an important and predictive 
input feature for a machine learning model she is building to predict which app the user will 
want to open next, yet adding this feature does not improve performance. Understanding how 
the model is using this feature will help the engineer determine how to proceed. 

• Intelligibility can help users decide how much to trust an AI system. Suppose an AI system 
deployed in a high school predicts that a student is likely to drop out but his teacher suspects 
that the system’s prediction is wrong. Providing the teacher with an explanation for the 
prediction, including a description of the factors most influential in that prediction, allows the 
teacher to better understand why the prediction was made, and even to reassess her opinion, 
before making a decision about how best to support the student’s education. 

• Intelligibility can help designers explain the system to end users. When designers can 
understand why specific predictions were made, they can reason about how that information 
should be passed on to the end users. 

• Intelligibility leads to more usable products for end users. Suppose a machine vision system 
was offered that provided low-vision users with information about the people who are currently 
in the office. Providing information about when a colleague’s face is outside the system’s field of 
view could help the user understand how to adjust one’s behavior in order to provide the best 
input for the system. 

• Intelligibility can uncover potential sources of unfairness. Suppose an AI system is used by an 
employer to match candidates to jobs. By examining the characteristics of the data used to train 
its constituent models, the employer may be able to identify that it underrepresents qualified 
female candidates, which, if not corrected, could result in hiring recommendations that 
undermine the employer’s objective of improving the diversity of its workforce. 

• Intelligibility can help demonstrate compliance with regulatory obligations. Suppose a lender 
uses an AI system to support its consumer lending decisions. Examining the training data and 
understanding how the data influences the system’s recommendations might help the lender’s 
developers and regulators discover that the system is unintentionally using certain features, like 
zip code, as a proxy for race which the law excludes from consideration. 

Intelligibility, beyond training time, can be a critical tool for inferencing or scoring in the following 
scenario: 

• Intelligibility can help explain prediction to people affected by the model. Suppose a lender 
uses an AI system to support its consumer lending decisions. The loan applicant gets a rejection 



from the model and contacts the lender to learn about the reasons behind the loan decision. 
The lender can potentially look at model explanation at inferencing time to understand how the 
model has rejected this person’s loan application. 

Introducing InterpretML  
Intelligibility is critical to answering questions in scenarios such as model debugging (Why did my model 
make this mistake? How can I improve my model?), fairness assessment (What is my model’s potential 
for fairness-related harms?), human-AI collaboration (How can I understand and trust the model’s 
decisions?), regulatory compliance (Does my model satisfy legal requirements?); and high-risk 
applications, such as, for example, healthcare, financial services, or judicial environments.  

One way of achieving intelligibility is to provide human-understandable explanations of predictions 
made by a machine learning model or actions taken by an AI system. InterpretML provides data 
scientists and business decision makers with seamless explanations for a model's overall behavior—
global explanation (e.g., what features most importantly affect the overall decisions of a loan allocation 
model). It further provides explanations behind individual predictions—or local explanations (e.g., why a 
person’s loan application has been rejected). Additionally, with InterpretML, one can observe model 
explanations for a subgroup of data points. Explanations across different subgroups of data are valuable, 
for example, when assessing potential fairness issues of over- or underrepresentation of groups of 
people.    
InterpretML addresses intelligibility by exposing many state-of-the-art interpretability algorithms 
under a unified API. This API covers two major interpretability forms:  

• Glassbox models, which are machine learning models that are inherently intelligible and 
explainable to the user. These include decision trees, linear models, and Explainable Boosting 
Machine (EBM) models, which provide lossless explanations and are editable by domain experts.  

• Black-box interpretability methods that generate explanations for any machine learning 
pipeline, no matter how opaque it is. Some of these methods are model-specific and some are 
model-agnostic: 

-  Model-agnostic explainers use different approximations to analyze the relationship 
between input feature and output predictions. They can explain any underlying black-
box model and are applied post model-training. These techniques do not require access 
to model internals such as weights or any other info about model structure. 

- Model-specific explainers are designed to explain model behavior of a specific class of 
models e.g., neural networks. These methods often use internal model information 
(such as weights) to explain the model behavior. 
 

InterpretML’s interactive visualization dashboard offers a rich visual experience for what-if analyses, 
where users can perturb one or multiple features of a selected data point and investigate whether the 
outcome of their model changes as expected. This strong debugging capability can uncover many hard-
to-see issues in a model. For example, in the case of a loan-allocation AI system, a user can perform a 
what-if analysis for a female loan applicant who has received a prediction of “rejection.” By changing the 



sex feature from “female” to “male,” the user can see whether this perturbation has an observable 
impact on the model’s prediction. If so, this potential fairness issue can be fully investigated and 
mitigated by a machine learning fairness toolkit such as Fairlearn.  
 
InterpretML also has another important debugging capability: Counterfactual example analysis, which 
computes the most similar data instances that have received different predictionsoutcomes. 
Counterfactual analysis generates explanations for individual outputs or predictions by identifying the 
smallest change to the input features that would cause the model or system to produce a desired 
output or prediction. For instance, in a loan-allocation model, feature-perturbed versions of the same 
loan application may show that the applicant would have received the loan, if, for example, the 
applicant’s income was $10,000 higher. This capability provides what-if explanations for model output 
and can be a useful complement to other explanation methods, both for end-users and model 
developers.  

The interactive visualization dashboard 
InterpretML’s dashboard provides interactive visualizations to help the user understand model 
performance for different subsets of data, explore model errors, and access dataset statistics and 
distributions. As mentioned, the dashboard also provides overall and individual explanations, using a 
variety of representations, and enables performing feature perturbations via what-if analysis for 
exploring how model predictions change as features are perturbed. 
 
The visualization dashboard supports data filtering and cohort creation capabilities, enabling users to 
filter data and observe global and local feature-importance insights of a subset of data. They can further 
create cohorts (e.g., Age <= 35 and Age > 35) and compare model performance and global/local 
explanations of created subgroups.   
 
Model performance tab: This tab shows model performance metrics across all data, and two subgroups 
of data (females and males). It further shows the distribution of rejection probability of loan applications 
of data points belonging to the female (second row) vs male (first row) group. In this case, females have 
consistently received higher prediction-probability scores of rejection compared to men. 

 



 
Overall model explanations: This feature show the feature-importance values affecting the prediction 
for each subgroup (blue for all data, orange for females, green for males). It can be observed that 
marital status for instance is a lot more important for impacting predictions of the male group compared 
to the same feature impacting the prediction of the female group: 

 

 
 

 
 

 

Individual feature importance factors: The user has clicked on a specific datapoint (from the female 
cohort) and is looking at the model prediction (reject with 68% probability) and the top factors 



impacting that prediction (sex being the most important). The user can further perturb datapoint’s 
feature values to observe how the model prediction changes. 

 

Supported interpretability techniques 
InterpretML introduces a new glassbox model, the Explainable Boosting Machine (EBM). EBM, 
developed by Microsoft Research, is an interpretable model that uses machine learning techniques like 
bagging, gradient boosting, and automatic interaction detection to breathe new life into traditional 
generalized additive models (GAMs). This makes EBMs as accurate as state-of-the-art techniques like 
random forests and gradient boosted trees. However, unlike these, which are black-box models, EBMs 
produce lossless explanations and are editable by domain experts. The following table summarizes all 
supported interpretability techniques in the Interpret repository: 

Interpretability 
Technique Description Type 

EBM 
The decision tree can provide information about which concepts a 
model deems important, as well as provide an understanding how 
the concepts interact with each other. 

glassbox 
model 

Decision Tree 
The decision tree can provide information about which concepts a 
model deems important, as well as provide an understanding how 
the concepts interact with each other. 

glassbox 
model 

Decision Rule List A decision rule is a simple IF-THEN statement consisting of a 
condition (also called antecedent) and a prediction. 

glassbox 
model 

Linear Regression A linear regression model predicts the target as a weighted sum of 
the feature inputs. 

glassbox 
model 



LogisticRegression 
Logistic regression models the probabilities for classification 
problems with two possible outcomes. It’s an extension of the linear 
regression model for classification problems. 

glassbox 
model 

SHAP Kernel Explainer SHAP's Kernel explainer uses a specially weighted local linear 
regression to estimate SHAP values for any model. 

Model-
agnostic 

SHAP Tree Explainer SHAP’s tree explainer, which focuses on polynomial time fast SHAP 
value estimation algorithm specific to trees and ensembles of trees. 

Model-
specific 

LIME 
LIME is an algorithm that can explain the predictions of any classifier 
or regressor in a faithful way, by approximating it locally with an 
interpretable model. 

Model-
agnostic 

Morris Sensitivity 
Analysis 

Sensitivity analysis provides insights into the importance of features 
by changing the feature values (or ignoring it) while all the other 
features staying constant, and seeing the output of the model. 

Model-
agnostic 

Partial Dependence 
The partial dependence method shows the marginal effect one or 
two features have on the predicted outcome of a machine learning 
model. 

Model-
agnostic 

 

Interpret is extended by Interpret-Community, an experimental repository of additional interpretability 
methods and utility functions to handle real-world datasets and workflows: 

Interpretability 
Technique Description Type 

SHAP Deep Explainer 

Based on the explanation from SHAP, Deep Explainer "is a high-
speed approximation algorithm for SHAP values in deep learning 
models that builds on a connection with DeepLIFT described in 
the SHAP NIPS paper. TensorFlow models and Keras models using 
the TensorFlow backend are supported (there is also preliminary 
support for PyTorch)". 

Model-
specific 

SHAP Linear Explainer SHAP's Linear explainer computes SHAP values for a linear model, 
optionally accounting for inter-feature correlations. 

Model-
specific 

Mimic Explainer 
(Global Surrogate) 

Mimic explainer is based on the idea of training global surrogate 
models to mimic black-box models. A global surrogate model is 
an intrinsically interpretable model that is trained to approximate 
the predictions of any black-box model as accurately as possible. 
Data scientists can interpret the surrogate model to draw 
conclusions about the black-box model. You can use one of the 
following interpretable models as your surrogate model: 
LightGBM (LGBMExplainableModel), Linear Regression 
(LinearExplainableModel), Stochastic Gradient Descent 
explainable model (SGDExplainableModel), and Decision Tree 
(DecisionTreeExplainableModel). 

Model-
agnostic 

Permutation Feature 
Importance Explainer 
(PFI) 

Permutation Feature Importance is a technique used to explain 
classification and regression models that is inspired by Breiman's 
Random Forests paper (see section 10). At a high level, the way it 
works is by randomly shuffling data one feature at a time for the 
entire dataset and calculating how much the performance metric 

Model-
agnostic 



of interest changes. The larger the change, the more important 
that feature is. PFI can explain the overall behavior of any 
underlying model but does not explain individual predictions. 

 

InterpretML also provides intelligibility for text classification scenarios by supporting a variety of 
techniques that can explain BERT and RNN models (built via Pytorch). This involves a text-specific 
visualization dashboard that highlights and underlines important words in a document leading to a 
specific text classification class (e.g., classified as having a negative sentiment). 

InterpretML as a community effort 
AI is a rapidly evolving field, and interpretability in AI is all the more so. InterpretML is a community-
driven open source project, to be shaped by people who seek to develop and deploy different 
intelligibility techniques in their model life cycle. Community members range from machine learning 
researchers seeking to contribute new intelligibility techniques to data scientists, developers, and 
business decision makers who aim to understand the impact of their AI systems on the lives of people 
affected by model predictions.  

Where we want to go next  
InterpretML will further invest on characterizing model errors and providing seamless end-to-end 
debugging scenarios augmented by intelligibility capabilities.  

 
Contributing to InterpretML  
Over the past few years, the machine learning transparency and interpretability landscape has been 
filled with techniques and OSS packages. However, having to call different explanation algorithms from a 
set of very distinct repositories (each with a different API), lack of unified visualizations to provide 
insights on model transparency, and lack of infrastructure to use trained explainers at inferencing time 
all have made the adoption of interpretability solutions slow and difficult. This effort started with the 
hope of accelerating adoption of advanced machine learning and deep learning algorithms across the 
academia and enterprise, particularly in regulated industries (e.g. finance, banking, insurance) with 
seamless access to different interpretability techniques and rich set of visualizations to enable 
interactive access to model predictions and explanations. 
 
InterpretML is designed to make it simple for the research community to add new interpretability 
techniques comparable with the state-of-the-art techniques available in the toolkit. 
Learn more at InterpretML on GitHub.  


