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Introduction
Targeted amplicon based analysis using 16S rRNA gene sequences 

is commonly used to investigate complex bacterial communities such 
as the human gut [1]. Analysis of such communities requires the use 
of bioinformatics tools to efficiently and reproducibly process the 
large amount of data generated from amplicon sequencing to derive 
a taxonomic overview. There are various tools available to analyse 16S 
rRNA gene sequencing data including QIIME (Quantitative Insights 
Into Microbial Ecology) [2], mothur [3], MG-RAST (Metagenomics 
- Rapid Annotation using Subsystems Technology) [4], Genboree [5],
EzTaxon [6], Pheonix2 [7], METAGENassist [8], MEGAN [9], VAMPS 

[10], SnoWMan [11], CloVR-16S [12], the RDPipeline (Ribosomal 
Database Project Pipeline) [13], Vegan [14], ade4 [15], and ape [16]. 
These tools can be categorised into those that are self-contained 
analysis pipelines i.e. those that incorporate various algorithms for 
quality control, clustering of similar sequences, assigning taxonomy, 
calculating diversity measures and visualising results and those that 
are not self-contained and can be used only for a specific step/s in the 
analysis of 16S rRNA gene sequencing data. There is limited literature 
comparing the functions and usability of these tools making the choice 
of which method to use often unclear.

In November 2014 Nilakanta et al. [17] published a review on the 
installation, documentation, features, and functions of seven tools: 
mothur, QIIME, W.A.T.E.R.S, RDPipeline, VAMPS, Genboree and 
SnoWMan. Nilakanta et al. concluded that mothur and QIIME were 

Abstract
Objective and Methods: Analysis of massive parallel sequencing 16S rRNA data requires the use of 

sophisticated bioinformatics pipelines. Several pipelines are available, however there is limited literature available 
comparing the features, advantages and disadvantages of each pipeline. This makes the choice of which method to 
use often unclear. Using gut microbial read data collected from a cohort of very preterm babies, we compared three 
pipelines commonly used for 16S rRNA gene analysis: MetaGenome Rapid Annotation using Subsystem Technology 
(MG-RAST), Quantitative Insights into Microbial Ecology (QIIME) and mothur. Using primarily default parameters, 
the three pipelines were compared in terms of taxonomic classification, diversity analysis and usability. 

Results: Overall, the three pipelines detected the same phylum in similar abundances (P>0.05). A difference 
was observed between the pipelines in terms of taxonomic classification of genera from the Enterobacteriaceae 
family, specifically Enterobacter and Klebsiella (P<0.0001 and P=0.0026 respectively). We found the analysis time 
to be quickest with QIIME compared to mothur and MG-RAST (approximately 1 hour as compared to 10 hours and 
2 days respectively). 

Conclusion: This study showed that QIIME, mothur and MG-RAST produce comparable results and that 
regardless of which pipeline or algorithm is selected for the analysis of 16S rRNA gene sequencing data you are likely 
to generate a reliable high-level overview of sample composition when analysing faecal samples. The differences we 
observed at the genus level highlight that a key limitation of using 16S rRNA gene analysis for genus and species 
level classification is that related bacterial species may be indistinguishable due to near identical 16S rRNA gene 
sequences. This is important to keep in mind when analysing 16S rRNA gene sequencing data.
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the two outstanding pipelines due to their comprehensive features and 
support documentation. This review was limited in that it did not use 
a unified dataset to compare the performance of the seven pipelines in 
terms of taxonomic assignments generated. In 2014, D’Argenio et al. [18] 
compared taxonomic compositions and diversity measures generated 
by QIIME and MG-RAST using four gastrointestinal samples. The study 
found no statistically significant differences in the assignments or alpha 
diversity measures; however the study concluded that QIIME produced 
the more accurate assignments, primarily due to the high number of 
reads unable to be classified by MG-RAST. A statistically significant 
difference was observed between the two pipelines with regards to beta 
diversity measures and the authors hypothesised that this was likely due 
to the reads left unclassified by MG-RAST. This review was limited by 
the small number of samples included in the analysis. 

In the current study, we use a single dataset (N=35) of human gut 
microbial read data collected from preterm infants to compare three 
commonly used pipelines, QIIME, mothur and MG-RAST, in terms 
of taxonomic assignments generated at both the phylum and genus 
level. We also compare and review the functionality and usability of 
QIIME, mothur and MG-RAST. We selected these three pipelines for 
comparison because despite having different workflows, they are all 
self-contained pipelines that can be used to analyse 16S rRNA gene 
sequencing data from start (i.e. raw sequence reads – SFF/FASTA/
QUAL) to finish (generate OTU/abundance table), enable comparison 
of multiple samples and employ the use of the SILVA 16S rRNA gene 
reference database. Additionally despite being three of the most 
commonly used and cited pipelines for the analysis of 16S rRNA gene 
data, there is limited information available comparing these pipelines. 
The information obtained from this study will be of particular use and 
interest to researchers who are new to the field or who have limited 
bioinformatics experience as it provides an unbiased comparison and 
overview of three of the most commonly used bioinformatics pipelines 
for characterising bacterial communities using the 16S rRNA gene.

Methods
Samples

We used a subset of faecal samples collected from preterm infants 
who participated in The ProPrems Trial [19,20]. Participant infants 
were born at less than 32 weeks’ gestation and weighed less than 1500 
g; the infants were randomised to receive either a probiotic preparation 
(Bifidobacterium longum subsp. Infantis BB-02, Streptococcus 
thermophilus TH-4 and B. animalis subsp. Lactis BB-12) or a placebo. 
Up to seven longitudinal faecal swabs were collected from each 
infant recruited in Victoria, Australia, over the first 12 months of life 
(12 months corrected age). A total of 35 swabs from 15 infants were 
included in this study. Sample characteristics are shown in Table 1. 

Ethics statements

The study has approval from The Royal Women’s Hospital 
(Melbourne) Human Research Ethics Committee, and infant samples 
were collected after obtaining written informed consent from parents 
or guardians. 

DNA extraction and sequencing

DNA was extracted from the samples using the MagNA Pure 
96 System (Roche Diagnostics, Branchburg, NJ). The extracted 
DNA was used to generate an amplicon based library using 
Bifidobacterium optimised PCR primers 357F/926Rb (357F - 
CCTACGGGAGGCAGCAG, 926Rb – CCGTCAATTYMTTTRAGT, 

the base that differs from the standard 926R primer is bolded) that 
target the V3-V5 hypervariable regions of the 16S rRNA gene as 
described by Sim et al. [21]. Each sample was barcoded with a Multiplex 
Identification (MID) tag (10 bp in length). The presences of tagged 
amplicons were confirmed visually on a 2% agarose gel. Amplicons 
were purified and pyrosequencing was performed on a Roche 454 
Genome Sequencer (GS FLX Titanium Chemistry) at Macrogen Inc. 
(Seoul, South Korea). 

Bioinformatics analysis

The resulting sequence read files were analysed using the three 
pipelines: QIIME (Version 1.8.0), mothur (Version 1.31.2) and MG-
RAST (Version 3.3.7.3). The SILVA reference database [22] and a 97% 
similarity cut-off was used to cluster reads for taxonomic classification 
in each pipeline.

Chimera filtering was performed using UCHIME [23]. The rRNA 
16S gold database [24] was used as the chimera checked reference 
database. In QIIME and MG-RAST, chimera filtering was done using 
UCHIME directly; we used the chimera.uchime command in mothur. 
A summary of the work flows used in each pipeline is shown in Figure 
1. QIIME and mothur analysis was run on a Linux cluster (iDataplex ×
86 system, Merri cluster at the Victorian Life Sciences Computational
Initiative [25]).

QIIME

Reads were de-multiplexed and underwent quality control 
using the split_libraries.py command. The following quality control 
parameters were used: reads were removed if they were less than 250 
bp in length, contained greater than eight ambiguous bases, contained 
homopolymers greater than eight base pairs in length, or had an 
average quality score of less than 25. No sliding window was used. 
OTU picking was performed using the pick_otus.py command with the 
default UCLUST algorithm. 

The UCLUST algorithm uses the USEARCH algorithm to assign 
sequences to a cluster [26]. The USEARCH algorithm works by 
searching a query sequence against target sequences and recording the 
k‑mers in common between the two sequences. Rather than inferring 
sequence similarity as the number of matching k‑mers between a 
query and target sequence, USEARCH arranges the target sequences in 
decreasing order of the number of unique k‑mers shared between the 
two sequences. The query sequences are arranged into clusters. Each 
cluster centroid shares a level of similarity below a set identity threshold 
level with each other centroid. The remaining query sequences are then 
assigned to a centroid (target sequence) based on identity threshold 
using the USEARCH algorithm described above. If the query sequence 
does not share similarity with a centroid above the threshold a new 
cluster is created.

The most abundant read in each OTU was selected as the 
representative sequence, this step was performed using pick_rep_set.

Infants, n 15
Specimen, n 35
Infants with 1 specimen, n 4
Infants with 2 specimen, n 4
Infants with 3 specimen, n 5
Infants with 4 specimen, n 2
Age at each specimen collection, d, mean (range) 102 (4-336)

Table 1: Relevant sample characteristics
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Figure 1: Overview of the workflows used by QIIME, mothur and MG-RAST. Several steps are shared across the three pipelines (e.g. quality control, clustering, 
classification/assigning taxonomy). mothur has a unique step in which all sequences must be aligned to a template database and any sequences which do not 
overlap in the same space are removed from the analysis. OTU: Operational taxonomic unit; QC: Quality control.

py. Assign_taxonomy.py was used for the classification of each of the 
representative sequences. The default UCLUST consensus taxonomy 
assigner and SILVA reference database (Version 111) [22] were used to 
assign taxonomy. 

mothur

The same quality control parameters used in QIIME were used in 
mothur. Following quality control, the dataset was simplified using the 
unique.seqs command. An alignment was generated using the align.
seqs command and the SILVA template alignment. The alignment was 
cleaned using the screen.seqs and filter.seqs commands. The pre.cluster 
command was run to merge together any reads that were within two 
base-pair-similarity of a more abundant read. 

Reads were given a taxonomic classification using the classify.seqs 
command using the SILVA reference database (Version 111) and the 
RDP Naïve Bayesian Classifier. Reads that could not be classified at a 
kingdom level were removed using the remove.lineages command and 
a distance matrix was built using the dist.seqs command, discarding 
distances greater than 0.15. This matrix was then used to generate the 
OTUs. The cluster command to group the reads in OTUs based on 
the distance matrix; cluster utilises the average neighbour algorithm 
[27]. The average neighbour algorithm works by first creating an OTU 

between the two most closely related sequences (have the smallest 
distance). This new OTU then replaces the two sequences in the 
distance matrix, the distances in the matrix are updated and the process 
is repeated.

We then obtained consensus taxonomy for each OTU using the 
classify.otu command.

MG-RAST

Post the removal of chimeric reads, reads were uploaded to MG-
RAST for sequence analysis under the project ID 10404. The MG-
RAST pipeline options that were used in the analysis are as follows: 
artificial replication reads were removed, reads were screened for host 
contamination using H. sapiens NCBI v36 database as a reference 
database, and reads were filtered on length (reads greater than 2 standard 
deviations from median read length were discarded) and ambiguous 
bases where there was no quality score information available. 

Reads were given a taxonomic classification using the ‘Best Hit 
Classification’ option in MG-RAST. Best Hit Classification reports the 
highest scoring annotation(s) for each read. In cases where there are 
two or more equally high scoring annotations, MG-RAST will report 
all annotations, this has the effect of inflating the weighting of reads 
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differences were not considered statistically significant.

A total of 90 distinct genera were identified across the three 
pipelines. MG-RAST and mothur were the least similar sharing only 
39 genera, while QIIME and mothur were the most similar (sharing 53 
genera). QIIME identified the most number of genera (n=70) and MG-
RAST identified the least (n=57).

Bifidobacterium was the most abundant genus detected by the 
three pipelines: QIIME 35.79%, mothur 35.41% and MG-RAST 
36.96%. There were notable differences at genus level classifications. 
While Klebsiella was the second most abundant genus detected by MG-
RAST (12.20%), it was detected at very low abundance (<1%) by both 
QIIME and mothur (P=0.0026). QIIME identified a high abundance of 
Enterobacter (28.46%), which was identified in very low abundance by 
MG-RAST (2.59%) and not at all by mothur (P=<0.0001). A summary 
of the top five genera identified by each pipeline is presented in Table 
4 and a complete list of genera identified across the three pipelines 
(and associated p-values) is presented in Table S1. The taxonomic 
composition of all samples across each pipeline is available in Table S2.

mothur was unable to classify 28.92% of reads at the genus level. 
In comparison, QIIME left 10.27% of reads unclassified at the genus 
level and MG-RAST left 16.46% reads unclassified. This difference was 
not statistically significant following correction for multiple testing 
(P=0.0814). The percentage of reads unable to be classified at both 
the phylum and genus level is shown in Table 3. The majority of reads 
(83.16%) unable to be classified by mothur at the genus level were 
from the Enterobacteriaceae family. This was also observed in QIIME, 
with 63.17% of unclassified reads coming from the Enterobacteriaceae 
family. The majority of reads unclassified by MG-RAST at the genus 
level could not be classified to any taxonomic level (70.10%).

Differences in bacteria from the Enterobacteriaceae were 
the primary difference observed between pipelines. We removed 
Enterobacteriaceae reads from the read set and compared the pipelines. 
We found no significant differences between pipelines at the genus level 
following removal of Enterobacteriaceae reads.

Diversity analysis comparisons

A significant difference was observed in the effective number of 
genera detected among the three pipelines (P=< 0.0001). A significant 
difference was also observed among the three pipelines with respect 
to genus richness (P=<0.0001). Diversity values between the three 
pipelines are presented in Table 3.

A statistically significant difference was also found among the three 
pipelines by ADONIS (P=0.01), but the R statistic is low (R=0.0941), 
suggesting that the effect of the pipeline was negligible. Furthermore, 
the NMDS plot (using the Bray-Curtis dissimilarity measure) shows 
that the data did not form distinct clusters based on pipeline (Figure 3).

Discussion
This study compared three 16S rRNA gene analysis pipelines, 

QIIME, mothur and MG-RAST using a single dataset of human gut 
microbial read data collected from preterm infants. We found that 
while little difference exists among the three pipelines with respect 
to diversity measures and taxonomic classifications, substantial 
differences exist in usability, particularly with time taken to analyse 
samples and ease of use.

Composition and diversity comparisons

No statistically significant differences were observed at the phylum 

with an ambiguous taxonomic classification. An example of a multiple 
annotation is shown in Figure S1.

MG-RAST uses the BLAT algorithm to identify rRNA sequences 
by searching a reduced RNA database. The UCLUST algorithm is then 
used to cluster identified rRNA sequences. Again, the representative 
sequence of each cluster (i.e. the longest read of each cluster) was 
used to assign taxonomy using the SILVA reference database (Version 
unknown). A maximum e-value cut-off of 1e-5 and a minimum 
alignment length of 250 bp were selected. Multiple annotations were 
identified using the pivot table function in Microsoft Excel 2010 
(Microsoft Corporation, Redmond, USA), and were resolved using the 
RDP Naive Bayesian rRNA Classifier [28,29]. 

Diversity comparisons and statistical analysis

Diversity was compared at a genus level. Each pipeline can be 
used to calculate diversity measures; however to maintain consistency 
in data analysis, we used the Vegan package in R [14] to calculate the 
genus richness and effective number of genera (as an expression of 
alpha diversity using the Simpson Index [30]). The overall dissimilarity 
between the abundance profiles generated by each pipeline was 
evaluated using the ADONIS and non-metric multidimensional scaling 
(NMDS) functions in Vegan (using the Bray-Curtis Dissimilarity 
measure) [14].

Differences between the pipelines were evaluated using ANOVA 
and the Friedman rank sum test. A significance level of alpha=0.05 was 
used for all tests. Bonferroni’s correction was used for multiple testing 
corrections where required.

Results
QIIME, mothur and MG-RAST each used a similar workflow. 

Each pipeline had a default algorithm for most analysis steps (Table 
2). While users can choose their preferred algorithm(s) in both QIIME 
and mothur, this is not possible with MG-RAST. A summary of the 
functionality and features of the three pipelines is presented in Table 2.

Overall, 159,691 reads from 35 samples (average of 4,563 reads per 
sample) were used for the comparative analysis of QIIME, mothur and 
MG-RAST. The number of reads assigned any identity (including an 
‘unclassified’ identity) by each pipeline is shown in Table 3. mothur 
annotated a slightly higher number of reads (P=0.0547). The number of 
reads that passed de-multiplexing and quality control in each pipeline 
is also shown in Table 3.

Analysis of the 35 samples took approximately one hour 
of computational time in QIIME, approximately ten hours of 
computational time in mothur and approximately two days of manual 
data cleaning in MG-RAST to remove multiple annotations of reads.

Taxonomic composition comparisons

The four most abundant phyla Proteobacteria, Actinobacteria, 
Firmicutes and Bacteroidetes were detected at similar abundances by 
QIIME, mothur and MG-RAST (Figure 2). MG-RAST left more than 
10% of the reads unclassified at the phylum level, significantly more than 
both QIIME and mothur (P=1.00e-08). Proteobacteria was detected 
in lower abundance by MG-RAST (30.44%), than by both QIIME 
and mothur (40.78% and 39.55%, respectively) and mothur detected 
Actinobacteria at a slightly higher abundance (35.93%) than MG-RAST 
and QIIME (31.96% and 31.73%, respectively). Verrucomicrobia was 
detected in very low abundance by both QIIME and mothur (0.15% 
and 0.03%, respectively), but was not detected by MG-RAST. These 
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level, suggesting that the three pipelines provide a comparable overview 
of sample composition. Differences among the three pipelines were most 
notable at the genus level, particularly in the classification of members 
from the Enterobacteriaceae family. The difficulty we experienced in 
classifying reads from the Enterobacteriaceae family may be a result of 
the variable regions (V3-V5) of the 16S rRNA gene we targeted. While 
there is no single variable region in the 16S rRNA gene that can be used 
to distinguish closely related Enterobacteriaceae bacteria, research by 
Chakravorty et al. [31] recommends that the combined V3 and V6 
regions may be best for distinguishing these bacteria.

In terms of genus richness and effective number of genera, the 
differences observed among the pipelines are most likely a result of the 
higher percentage of unclassified reads in mothur as compared to the 
other pipelines. However, the results from ADONIS and NMDS suggest 
that there is very little difference in the results generated by the three 
pipelines.

Usability and functionality comparisons

Each pipeline provides a ‘one-stop-shop’ for the analysis of 
16S rRNA gene sequencing data. However, there are fundamental 
differences in how each pipeline has been developed. MG-RAST 
provides an automated service where the user uploads sequencing data 
to a web application and selects a set of quality control parameters. The 
data then automatically pass through a series of steps and the user is left 
to only generate abundance profiles and visualisations. QIIME brings 

together (‘wraps’) multiple external programs/algorithms, and enables 
the user to seamlessly feed output from one program/algorithm into 
another.

mothur re-implements multiple external programs/algorithms 
into a single program and has made modifications to several of the 
re-implemented programs/algorithms to increase speed and improve 
functionality. This means that the installation of mothur is simpler than 
the installation of QIIME, because while the mothur pipeline has no 
external dependencies and is installed as a single program, some of the 
external dependencies in QIIME must be installed independently of 
the main pipeline. Both QIIME and mothur require the user to have 
command line experience; however the documentation and tutorials 
provided by the teams of both pipelines are comprehensive enough that 
this is not a hurdle to usability. Analysis with MG-RAST is performed 
using a graphical user interface (GUI) through a web browser and so it 
does not need to be installed and requires no programming experience. 
mothur also has an available GUI for installation, but the command line 
version is more widely used.

In terms of workflow, the most notable difference is that mothur 
generates an alignment of the data by aligning query reads with 
reference 16S rRNA gene sequences in a template alignment database. 
The alignment is then cleaned to ensure all reads overlap in the same 
region of the 16S rRNA gene. This process is unique to the mothur 
pipeline and the inclusion of this step is designed to increase the 
robustness of assignment of reads into OTUs [32].

QIIME mothur MG-RAST
License Open-source Open-source Open-source

Implemented in Python C++ Perl
Current version

(at 13.03.15) 1.9.0 1.34.0 3.5

Cited (according to Scopus at 
08.04.15) 1769 2565 722

Website http://qiime.org/ [34] http://www.mothur.org/ [35] http://metagenomics.anl.gov [36]

Web-based interface
YES (http://www.n3phele.com/)

Not supported/maintained by the QIIME 
team

NO YES (at website above)

Primary usage Command line Command line GUI (at website above)
Amplicon analysis YES YES YES

Whole metagenome shotgun 
analysis YES – experimental only NO YES

Sequencing technology 
compatibility Illumina, 454, Sanger, Ion Torrent, PacBio Illumina, 454, Sanger, Ion Torrent, 

PacBio Illumina, 454, Sanger, Ion Torrent, PacBio

Quality control YES YES YES
16S rRNA gene Databases 

searched
RDP, SILVA, Greengenes and custom 

databases
RDP, SILVA, Greengenes and custom 

databases M5RNA, RDP, SILVA and Greengenes

Alignment Method PyNAST, MUSCLE, INFERNAL Needleman-Wunsch, blastn, gotoh BLAT
Taxonomic analysis/assignment UCLUST, RDP, BLAST, mothur Wang/RDP approach BLAT

Clustering algorithm UCLUST, CD-HIT, mothur, BLAST mothur, adapts DOTUR and CD-HIT UCLUST
Diversity analysis alpha and beta alpha and beta alpha
Phylogenetic Tree FastTree Clearcut algorithm YES
Chimera detection UCHIME, chimera slayer, BLAST UCHIME, chimera slayer, and more No

Visualisation PCA plots, OTU networks, bar plots, heat 
maps

Dendrograms, heat maps, Venn 
diagrams, bar plots, PCA plots

PCA plots, heat maps, pie charts, bar plots, 
Krona and Circos for visualisation

User Support Forum, tutorials, FAQs, help videos Forum, SOPs, FAQs, user manual Video tutorials, FAQs, user manual, ‘How to’ 
section on website

Where known, the algorithm used by each pipeline is named. The default algorithm, where known, is bolded. GUI: Graphical User Interface; RDP: Ribosomal Database 
Project; M5RNA: Non-redundant multisource ribosomal RNA annotation; PyNAST: PythonNAST; MUSCLE: MUltiple Sequence Comparison by Log-Expectation; INFERNAL: 
INFERence of RNA Alignment; BLAST: Basic Local Alignment Search Tool; BLAT: BLAST-Like Alignment Tool; CD-HIT: Cluster Database at High Identity with Tolerance; 
PCA: Principal Coordinate Analysis; OTU: Operational Taxonomic Unit; FAQ: Frequently Asked Questions; SOPs: Standard Operating Procedures
Table 2: Comparison of the functionality and features of QIIME, mothur and MG-RAST

http://qiime.org
http://www.mothur.org/
http://metagenomics.anl.gov
http://www.n3phele.com
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QIIME mothur MG-RAST p-value
Approximate analysis time (for the study 

dataset) 1 hour 10 hours 2 days -

Number of reads uploaded 159,691 159,691 159,691 -
Number of reads post demultiplexing and QC 131,661 132,314 131,368 0.695

Number of reads assigned identity 123,909 128,064 123,022 0.0547
Number of unclassified reads at phylum level (%) 104 (0.08) 155 (0.12) 14,199 (11.54) <0.0001*
Number of unclassified reads at genus level (%) 12,724 (10.27) 37,039 (28.92) 20,253 (16.46) 0.0814

Number of genera identified 60 50 57 -

Genus Richness (median, IQR) 10
(9-15)

8
(5-12)

9
(7-14) <0.0001*

Effective number of genera (median, IQR) 3
(2-4)

2
(2-3)

3
(3-4)  <0.0001*

*indicates statistically significant difference at alpha=0.05. 
QC, quality control
IQR, interquartile range (25-75)

Table 3: Comparison of analysis with QIIME, mothur and MG-RAST.

QIIME mothur MG-RAST
Bifidobacterium (35.79%) Bifidobacterium (35.41%) Bifidobacterium (36.96%)
Enterobacter (28.46%) Escherichia-Shigella (12.38%) Klebsiella (12.20%)
Enterococcus (4.09%) Enterococcus (4.27%) Escherichia-Shigella (7.20%)
Clostridium (3.44%) Staphylococcus (3.41%) Enterococcus (4.17%)
Staphylococcus (3.41%) Clostridium (3.26%) Veillonella (3.57%)

NB: abundance of each genus is expressed in parentheses following the genus name Escherichia and Shigella are difficult to resolve using 16S rRNA gene analysis [31] 
and as such have been grouped together as one genus. 

Table 4: The five most abundant genera detected by QIIME, mothur and MG-RAST.
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Figure 2: Comparison of taxonomic classification by QIIME, mothur and MG-RAST at the phylum level. This presents the abundance of different phyla 
detected by QIIME, mothur and MG-RAST. The phyla present in the less than 1% category are: Verrucomicrobia and Fusobacteria.
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Analysis with MG-RAST is straightforward. MG-RAST does not 
require the user to input any commands and it has fewer analysis options 
than QIIME and mothur, making it more suitable for researchers 
without bioinformatics or command line experience. The website is 
easy to navigate and the analysis options are clear and well explained. 
Once the data have undergone quality control, without post analysis 
researchers can quickly obtain a descriptive overview of a bacterial 
population. However, the data produced by MG-RAST require a 
lot of cleaning due to the multiple annotations of reads. Though it is 
not difficult to do, cleaning the data is time consuming and would be 

challenging to complete in a timely manner for large data sets. Because 
of this, analysis with MG-RAST is the most time consuming. The most 
common type of multiple annotations observed were where reads were 
annotated either as both a specific bacterial species and ‘unclassified’, 
or annotated as two different species from the same genus (see Figure 
S1). Furthermore, while analysis can begin immediately in QIIME and 
mothur, samples must undergo quality control by the MG-RAST team 
prior to being available for analysis. MG-RAST assigns a priority to 
data uploaded for analysis based on when the data set will be made 
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Figure 3: Comparison of diversity measures between QIIME, mothur and MG-RAST. (a) Presents genus richness (i.e. number of identified genera) for each 
sample (n=35) as determined by the three pipelines, (b) Presents effective number of genera (as a measure of alpha diversity) for each sample (n=35) as determined 
by the three pipelines. (c) Non-metric multidimensional scaling (NMDS) plot of pair wise Bray-Curtis dissimilarities between all samples processed using the three 
pipelines. No clear clustering of samples based on pipeline was observed. All diversity measures were calculated using genus level data. For Figure 3(a) and 3(b), 
samples are on the x-axis and are arranged in order of increasing age.
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publically available and the wait for private data to undergo quality 
control can be up to several weeks.

We found QIIME to be more user friendly than mothur. It was 
easier to understand which command to use in QIIME and it took 
several attempts to generate a sensible output from mothur, thus our 
analysis in mothur took a lot longer than in QIIME. We encountered 
the most difficulty when creating, screening and filtering the alignment 
in mothur. Initially we screened out too many reads and as a result only 
26,477 reads were annotated, 44.61% of which could not be classified 
to a genus level. We also encountered difficulties when creating the 
distance matrix, with the operation timing out after 10 hours due to 
the size of the matrix. The steep learning curve associated with mothur 
is an important consideration to keep in mind, especially for projects 
with a short time frame or for research teams with limited informatics 
experience.

QIIME and mothur are more powerful than MG-RAST, particularly 
in terms of their statistical capabilities and user freedom. mothur offers 
more flexibility than QIIME and is likely to be preferred over QIIME 
and MG-RAST by researchers who are competent at the command line 
and looking at doing complex amplicon analysis. QIIME is more likely 
to be preferred for the analysis of a very large datasets, due to its quick 
analysis time and ease of use. Importantly, the taxonomic summary 
tables generated by QIIME are the easiest of the three pipelines to adapt 
to downstream analyses in statistical packages such as R [33].

MG-RAST has some excellent functions. MG-RAST generates 
a multi-fasta file for each sample when assigning taxonomy. The file 
contains all reads that were assigned an identity (including unclassified) 
following the search of the 16S rRNA gene reference database. Each 
read is identified in the fasta file with a heading shown in Figure S1. This 
file is easy to access and is extremely useful for resolving the multiple 
annotations generated by MG-RAST, analysing unclassified reads, and 
also selecting particular reads to perform downstream analyses such as 
multiple sequence alignments.

There is no requirement for access to a powerful computer to process 
multiple samples with MG-RAST, unlike mothur and QIIME, making it 
easily accessible to all users with an internet connection. Furthermore, 
MG-RAST acts as a public database for 16S rRNA gene and shotgun 
metagenomic datasets, which allows comparison and investigations of 
other publicly available datasets.

There are limitations to this study.  We acknowledge that there are 
some inconsistencies between the analysis methods used by the three 
pipelines that may impact on comparability. For example, the quality 
control parameters used in MG-RAST were different to those used in 
QIIME and mothur, and we were not able to determine the version of 
the SILVA database used for taxonomic assignment by MG-RAST. This 
is a proof of principle analysis showing how choice of bioinformatics 
pipeline can impact the analysis of 16S rRNA gene sequencing data.  
The strength of this study is that it used a larger dataset than similar 
comparative analyses [18]. However, given the data used in this study 
are all of the same sample type and came from the one project, it should 
be highlighted that different sample types may behave differently in 
each pipeline according to their true taxonomic composition.

This study used a 454 sequencing dataset, however QIIME, mothur 
and MG-RAST can be used to analyse data from other sequencing 
platforms, including Illumina MiSeq; and the information outlined 
above is relevant to all 16S rRNA gene sequencing datasets, not just 
those from a 454 sequencing platform. We have used QIIME to process 
16S rRNA gene sequencing data from a MiSeq system (data not shown), 

and found that the advantages of QIIME outlined above also apply to 
MiSeq data.  

QIIME, mothur and MG-RAST are still active years after their 
initial development and undergo regular updates, highlighting the value 
of each of these projects to 16S rRNA gene analysis. The differences we 
observed at the genus level highlight a key limitation of using 16S rRNA 
gene analysis for genus and species level classification - related bacterial 
species may have near identical 16S rRNA gene sequences. In fact, even 
genus identification can be unreliable. For example, QIIME groups 
together bacteria from the Escherichia and Shigella genera because they 
cannot easily be distinguished by their 16S rRNA gene sequence [31]. 
Additionally, the combination of using only part of the 16S rRNA gene 
sequence and read errors means that discrimination between species is 
unlikely. Importantly, this study has shown that QIIME, mothur and 
MG-RAST are comparable in terms of the phylum they detected and 
regardless of which pipeline or algorithm is selected you are likely to 
generate a reliable overview of sample composition. 

In the field of bioinformatics there are often a multitude of 
algorithms, software packages, or pipelines that can be used to perform a 
single task. Even for experienced bioinformaticians, the choice of which 
method to use can be confusing. This study provides a comparison and 
overview of three of the most commonly used bioinformatics pipelines 
for characterising bacterial communities using the 16S rRNA gene.  The 
results of this study may be used as a resource for people with limited 
bioinformatics experience when selecting a pipeline to analyse 16S 
rRNA gene data.
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