Rick Leach

Rick Leach

Grand Haven, Michigan, United States
3K followers 500+ connections

Activity

Join now to see all activity

Experience

  • RemedyBio Graphic

    RemedyBio

    Dublin City, County Dublin, Ireland

  • -

  • -

    Melbourne, Florida Area

  • -

  • -

    Cambridge, MA

  • -

    Greater Grand Rapids, Michigan Area

  • -

    Mountain View, CA

  • -

  • -

    Rockville, MD

  • -

  • -

  • -

  • -

Education

Publications

  • Genome sequencing identifies major causes of severe intellectual disability.

    Nature

    Severe intellectual disability (ID) occurs in 0.5% of newborns and is thought to be largely genetic in origin1, 2. The extensive genetic heterogeneity of this disorder requires a genome-wide detection of all types of genetic variation. Microarray studies and, more recently, exome sequencing have demonstrated the importance of de novo copy number variations (CNVs) and single-nucleotide variations (SNVs) in ID, but the majority of cases remain undiagnosed3, 4, 5, 6. Here we applied whole-genome…

    Severe intellectual disability (ID) occurs in 0.5% of newborns and is thought to be largely genetic in origin1, 2. The extensive genetic heterogeneity of this disorder requires a genome-wide detection of all types of genetic variation. Microarray studies and, more recently, exome sequencing have demonstrated the importance of de novo copy number variations (CNVs) and single-nucleotide variations (SNVs) in ID, but the majority of cases remain undiagnosed3, 4, 5, 6. Here we applied whole-genome sequencing to 50 patients with severe ID and their unaffected parents. All patients included had not received a molecular diagnosis after extensive genetic prescreening, including microarray-based CNV studies and exome sequencing. Notwithstanding this prescreening, 84 de novo SNVs affecting the coding region were identified, which showed a statistically significant enrichment of loss-of-function mutations as well as an enrichment for genes previously implicated in ID-related disorders. In addition, we identified eight de novo CNVs, including single-exon and intra-exonic deletions, as well as interchromosomal duplications. These CNVs affected known ID genes more frequently than expected. On the basis of diagnostic interpretation of all de novo variants, a conclusive genetic diagnosis was reached in 20 patients. Together with one compound heterozygous CNV causing disease in a recessive mode, this results in a diagnostic yield of 42% in this extensively studied cohort, and 62% as a cumulative estimate in an unselected cohort. These results suggest that de novo SNVs and CNVs affecting the coding region are a major cause of severe ID. Genome sequencing can be applied as a single genetic test to reliably identify and characterize the comprehensive spectrum of genetic variation, providing a genetic diagnosis in the majority of patients with severe ID.

    See publication

Recommendations received

More activity by Rick

View Rick’s full profile

  • See who you know in common
  • Get introduced
  • Contact Rick directly
Join to view full profile

Other similar profiles

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Others named Rick Leach in United States

Add new skills with these courses