Daniele Bernardini

Daniele Bernardini

San Francisco, California, United States
10K followers 500+ connections

About

I am a seasoned entrepreneur and researcher with over 20 years of experience in software,…

Contributions

Activity

Join now to see all activity

Experience

Education

Licenses & Certifications

Publications

  • Learning to Generate All Feasible Actions

    IEEE Access

    Modern cyber-physical systems are becoming increasingly complex to model, thus motivating data-driven techniques such as reinforcement learning (RL) to find appropriate control agents. However, most systems are subject to hard constraints such as safety or operational bounds. Typically, to learn to satisfy these constraints, the agent must violate them systematically, which is computationally prohibitive in most systems. Recent efforts aim to utilize feasibility models that assess whether a…

    Modern cyber-physical systems are becoming increasingly complex to model, thus motivating data-driven techniques such as reinforcement learning (RL) to find appropriate control agents. However, most systems are subject to hard constraints such as safety or operational bounds. Typically, to learn to satisfy these constraints, the agent must violate them systematically, which is computationally prohibitive in most systems. Recent efforts aim to utilize feasibility models that assess whether a proposed action is feasible to avoid applying the agent’s infeasible action proposals to the system. However, these efforts focus on guaranteeing constraint satisfaction rather than the agent’s learning efficiency. To improve the learning process, we introduce action mapping, a novel approach that divides the learning process into two steps: first learn feasibility and subsequently, the objective by mapping actions into the sets of feasible actions. This paper focuses on the feasibility part by learning to generate all feasible actions through self-supervised querying of the feasibility model. We train the agent by formulating the problem as a distribution matching problem and deriving gradient estimators for different divergences. Through an illustrative example, a robotic path planning scenario, and a robotic grasping simulation, we demonstrate the agent’s proficiency in generating actions across disconnected feasible action sets. By addressing the feasibility step, this paper makes it possible to focus future work on the objective part of action mapping, paving the way for an RL framework that is both safe and efficient.

    See publication
  • 6IMPOSE: Bridging the reality gap in 6D pose estimation for robotic grasping

    Frontiers in Robotics and AI

    6D pose recognition has been a crucial factor in the success of robotic grasping, and recent deep learning based approaches have achieved remarkable results on benchmarks. However, their generalization capabilities in real-world applications remain unclear. To overcome this gap, we introduce 6IMPOSE, a novel framework for sim-to-real data generation and 6D pose estimation. 6IMPOSE consists of four modules: First, a data generation pipeline that employs the 3D software suite Blender to create…

    6D pose recognition has been a crucial factor in the success of robotic grasping, and recent deep learning based approaches have achieved remarkable results on benchmarks. However, their generalization capabilities in real-world applications remain unclear. To overcome this gap, we introduce 6IMPOSE, a novel framework for sim-to-real data generation and 6D pose estimation. 6IMPOSE consists of four modules: First, a data generation pipeline that employs the 3D software suite Blender to create synthetic RGBD image datasets with 6D pose annotations. Second, an annotated RGBD dataset of five household objects was generated using the proposed pipeline. Third, a real-time two-stage 6D pose estimation approach that integrates the object detector YOLO-V4 and a streamlined, real-time version of the 6D pose estimation algorithm PVN3D optimized for time-sensitive robotics applications. Fourth, a codebase designed to facilitate the integration of the vision system into a robotic grasping experiment. Our approach demonstrates the efficient generation of large amounts of photo-realistic RGBD images and the successful transfer of the trained inference model to robotic grasping experiments, achieving an overall success rate of 87% in grasping five different household objects from cluttered backgrounds under varying lighting conditions. This is made possible by fine-tuning data generation and domain randomization techniques and optimizing the inference pipeline, overcoming the generalization and performance shortcomings of the original PVN3D algorithm. Finally, we make the code, synthetic dataset, and all the pre-trained models available on GitHub.

    See publication
  • Edge Generation Scheduling for DAG Tasks using Deep Reinforcement Learning

    IEEE Transactions on Computers

    Directed acyclic graph (DAG) tasks are currently adopted in the real-time domain to model complex applications from the automotive, avionics, and industrial domains that implement their functionalities through chains of intercommunicating tasks. This paper studies the problem of scheduling real-time DAG tasks by presenting a novel schedulability test based on the concept of trivial schedulability . Using this schedulability test, we propose a new DAG scheduling framework ( edge generation…

    Directed acyclic graph (DAG) tasks are currently adopted in the real-time domain to model complex applications from the automotive, avionics, and industrial domains that implement their functionalities through chains of intercommunicating tasks. This paper studies the problem of scheduling real-time DAG tasks by presenting a novel schedulability test based on the concept of trivial schedulability . Using this schedulability test, we propose a new DAG scheduling framework ( edge generation scheduling—EGS ) that attempts to minimize the DAG width by iteratively generating edges while guaranteeing the deadline constraint. We study how to efficiently solve the problem of generating edges by developing a deep reinforcement learning algorithm combined with a graph representation neural network to learn an efficient edge generation policy for EGS. We evaluate the effectiveness of the proposed algorithm by comparing it with state-of-the-art DAG scheduling heuristics and an optimal mixed-integer linear programming baseline. Experimental results show that the proposed algorithm outperforms the state-of-the-art by requiring fewer processors to schedule the same DAG tasks. https://github.com/binqi-sun/egs

    See publication

Projects

  • Implementation of continuous control monitoring (CCM) for purchasing processes

    -

    Introduction of new purchasing and asset handling processes. Implementation of an exporting application for MS Dynamics AX concerning the data of the accounting-, purchasing-, goods handling modules for controlling purposes (C#).

    Other creators

Languages

  • Italian

    Native or bilingual proficiency

  • German

    Professional working proficiency

  • English

    Professional working proficiency

  • Japanese

    Elementary proficiency

Recommendations received

More activity by Daniele

View Daniele’s full profile

  • See who you know in common
  • Get introduced
  • Contact Daniele directly
Join to view full profile

Other similar profiles

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Others named Daniele Bernardini

Add new skills with these courses