
A Divide-and-Conquer Approach for Solving Interval Algebra Networks

Jason Jingshi Li, Jinbo Huang, and Jochen Renz

Australian National University and National ICT Australia
Canberra, ACT 0200 Australia

{jason.li | jochen.renz}@anu.edu.au, jinbo.huang@nicta.com.au

Abstract

Deciding consistency of constraint networks is a
fundamental problem in qualitative spatial and tem-
poral reasoning. In this paper we introduce a
divide-and-conquer method that recursively parti-
tions a given problem into smaller sub-problems in
deciding consistency. We identify a key theoretical
property of a qualitative calculus that ensures the
soundness and completeness of this method, and
show that it is satisfied by the Interval Algebra (IA)
and the Point Algebra (PA). We develop a new en-
coding scheme for IA networks based on a combi-
nation of our divide-and-conquer method with an
existing encoding of IA networks into SAT. We
empirically show that our new encoding scheme
scales to much larger problems and exhibits a con-
sistent and significant improvement in efficiency
over state-of-the-art solvers on the most difficult in-
stances.

1 Introduction

Temporal information such as “the financial crisis begun dur-
ing the 2008 presidential campaign” does not specify exact
dates or durations; only qualitative information about the re-
lationships between different periods of time is given. Allen
[1983] introduced the Interval Algebra (IA), a qualitative cal-
culus to represent and reason about such relationships be-
tween temporal intervals. It distinguishes 13 atomic relations,
i.e., between any two temporal intervals exactly one of these
relations holds. Allen’s approach was very successful and
marked the start of a new research area, now called qualita-
tive spatio-temporal reasoning (QSTR).

QSTR uses constraint calculi to reason about spatial and
temporal information. The fundamental reasoning task in
QSTR is to decide whether a given collection of informa-
tion is consistent. This can be formulated as a constraint
satisfaction problem. Fig. 1a depicts a simple example that
is represented as a constraint network over IA: “Peter reads
the newspaper during breakfast, and goes to work after break-
fast.” This information is clearly consistent; Fig. 1b depicts
a solution where each variable has been instantiated to a con-
crete time interval. However, for large and complex networks,
which may contain disjunctions of atomic relations such as

Figure 1: a) an IA network, and b) an instantiation of the
network in the temporal domain.

“Peter reads his private email either before or after work,”
we will need temporal reasoning algorithms to decide consis-
tency.

Deciding consistency in QSTR is NP-hard for many cal-
culi including IA. If only atomic IA relations are permitted,
however, the consistency problem becomes tractable. Specif-
ically, it has been shown that the path consistency algorithm,
which removes impossible relations from all triples of nodes
in a constraint network, is sufficient for deciding consistency
for atomic IA networks, i.e., networks where each edge is an
atomic relation.

In the past twenty years there have been many attempts
to make reasoning in IA and other spatial or temporal cal-
culi more efficient. Most of these approaches use constraint
satisfaction techniques where an instance is solved by back-
tracking over tractable sub-instances. More efficient solutions
were obtained by studying different backtracking heuris-
tics and most notably also by enlarging known tractable
subsets—sets of relations for which the consistency problem
is tractable [Nebel and Bürckert, 1995]. By combining differ-
ent backtracking heuristics and the maximal tractable subset
of IA, many instances, even hard ones in the phase-transition
region, were solved reasonably fast [Nebel, 1997]. However,
particularly large instances remain difficult to solve.

Pham et al. [2008] recently proposed an encoding of IA
networks into Boolean formulas such that the formula is satis-
fiable if and only if a path-consistent atomic refinement of the
network exists. The encoding enforces path consistency using
a set of clauses for every triple of nodes in the network, and
solution finding is delegated to an off-the-shelf SAT solver.
This results in increased efficiency for some hard problem in-
stances, but its memory requirements can be quite demanding
as the encoding grows cubically with network size. Our ex-

572

periments showed that for large instances the SAT formulas
can easily become too large even for modern SAT solvers.

In this paper we present a theoretical analysis that results in
a divide-and-conquer approach to solving IA networks. The
basic idea is that under certain conditions, which IA satis-
fies, one can decompose a network into two overlapping sub-
networks, and solve the two sub-networks separately. This
eliminates the need for examining triangles across the two
sub-networks when enforcing path consistency. The same
idea applies recursively to each of the sub-networks, leading
to further savings. Combining this result with the approach of
[Pham et al., 2008] we are then able to produce significantly
more compact SAT encodings and more efficient solutions.

In the following section we review the basic notions of
qualitative spatial and temporal calculi and summarize exist-
ing constraint-based and SAT-based methods. In Section 3 we
present a theoretical analysis of IA that leads to a divide-and-
conquer SAT encoding scheme for IA networks. In Section 4
we empirically evaluate the resulting SAT encoding and show
that it is superior to existing solvers on hard instances. Sec-
tion 5 concludes the paper.

2 Preliminaries

An IA network describes possible scenarios of intervals along
a directed line. The network is a complete graph with vertices
representing the intervals, and directed edges representing the
possible relationship between them. As in our earlier exam-
ple of Fig. 1a, we often omit edges where the relationship
between the two intervals is the universal relation (i.e., no
constraint is specified). Also note that we only need to give
one directed edge between a pair of vertices as the other one
is implied.

More formally, a qualitative temporal (or spatial) calculus
A represents relationships between temporal (or spatial) en-
tities from a given domain D, such as intervals, points, or
extended regions. A calculus partitions D×D into a finite set
of pairwise disjoint and jointly exhaustive atomic relations
B, i.e., between any two elements of D exactly one atomic
relation holds. Temporal or spatial information can then be
represented in the form of constraints xRy, where x and y
are variables over D and R ∈ 2B is a disjunction of atomic
relations. Disjunctions are used to represent indefinite infor-
mation. If the exact relationship between x and y is known,
then R is an atomic relation.

IA [Allen, 1983] is the best known example of a qualitative
calculus. Its domain is the set of intervals on a directed time
line, the 13 atomic relations are {before, after, meets, met-
by, overlaps, overlapped-by, equals, during, includes, starts,
started-by, finishes, and finished-by}, leading to 213 = 8192
possible IA relations.

A set of binary constraints Θ of a qualitative calculus
A can be represented as a binary constraint network N =
(VN , �N) over A, where the variables of Θ become the ver-
tices VN of N and �N (i, j) = Rij labels the edge between
nodes i and j, where Rij denotes the constraint between vari-
ables i and j. Note that Rij is the universal relation in case
no constraint is imposed between variables i and j.

A network N is a sub-network of another network M if

VN ⊆ VM and the labeling �N of the edges of N is ex-
actly the same as the labeling �M of the same edges in M ,
i.e., �N (i, j) = �M (i, j)∀i, j ∈ VN . We write N ⊆ M
in such cases. N is a refinement of M if VN = VM and
�N (i, j) ⊆ �M (i, j)∀i, j ∈ VN . The intersection (∩) of
two networks N1, N2 is the maximal network that is a sub-
network of both N1 and N2. When the two networks sat-
isfy VN1 ∩ VN2 = VN1∩N2 , we also define their union (∪)
to be the minimal1 network of which both N1 and N2 are
sub-networks. A network N is atomic if all the labels of N
are atomic relations of A, and is path consistent if Rij ⊆
Rik ◦ Rkj∀i, j, k ∈ VN , where ◦ is the composition operator
of A (the composition R ◦S of two relations is defined as the
relation {(a, c)|∃b : (a, b) ∈ R, (b, c) ∈ S}).

2.1 Deciding consistency

The fundamental reasoning problem for a qualitative calculus
is that of deciding consistency for a set of constraints Θ, i.e.,
deciding whether there is an instantiation of all variables in Θ
with values from the domain D such that all constraints in Θ
are satisfied. As domains of a qualitative calculus such as IA
are usually infinite, standard constraint propagation methods
do not directly apply. Instead, we can use operators on the
relations in order to derive new information from the given
constraints.

An example of such a technique is the well-known path
consistency algorithm, which iteratively checks all triangles
in the network to rule out impossible relations until a fixed
point is reached. Continuing with our example, given that
“reading” occurs during “breakfast” and “work” occurs after
“breakfast,” path consistency will detect that it must be the
case that “reading” occurs before “work,” after eliminating
the other 12 atomic relations that are initially in the label. As
no other relations on any of the edges can be eliminated, the
network is now path consistent.

IA has the property that for any atomic network of size n,
path consistency implies strong n-consistency [van Beek and
Cohen, 1990]. This means that given a path-consistent atomic
network and any subset of its variables (nodes) of size k, any
consistent instantiation of k − 1 variables in the set can be
extended to a consistent instantiation of all k variables. This
reduces consistency checking to a search for a path-consistent
atomic network that is a refinement of the original network.

2.2 Constraint-based approach

The basic constraint-based approach for IA networks is hence
a backtracking search where branching is performed on the
atomic relations in the label of each edge. Path consistency
is enforced immediately after each branch is created, and any
inconsistency thus detected results in backtracking. The net-
work is consistent if and only if a leaf of the search tree can
be successfully reached where every edge has been assigned
an atomic relation. Variable and value ordering heuristics for
these algorithms have been studied to improve their efficiency
[Ladkin and Reinefeld, 1992].

1Minimality here means that the network has the fewest vertices
and the fewest edges possible, where we regard edges labeled with
universal relations as invisible.

573

The major improvement in the efficiency of constraint-
based solvers has been the use of large and preferably maxi-
mal tractable subsets of the full set of relations. Consistency
for networks that contain only relations from such sets can be
decided in polynomial time, often with the path consistency
algorithm. The only maximal tractable subset (ORD-Horn)
of IA that contains all atomic relations has been identified by
Nebel and Bürckert [1995]. Nebel [1997] showed that the
right combination of tractable subset and heuristics can lead
to very fast solutions. This result led to an increased inter-
est in identifying tractable subsets for other qualitative calculi
[Renz and Li, 2008].

While Nebel’s solver has been the standard IA solver for
the past ten years, recent improvements have been proposed
[Condotta et al., 2007] and implemented in the latest version
of the GQR solver [Gantner et al., 2008], which is currently
the fastest constraint-based IA solver.

2.3 SAT-based approach

Recently, Pham et al. [2008] proposed an encoding of IA net-
works into Boolean formulas. The encoding can be based on
either the constraints between the intervals as given in the net-
work (event-based), or the constraints between the end-points
of those intervals (point-based). In either case, the Boolean
formulas are constructed in such a way that each solution of
the formula corresponds to a path-consistent atomic refine-
ment of the network, and vice versa. Hence the formula is
satisfiable if and only if the network is consistent.

They studied several alternative encoding methods and
found that empirically the “point-based 1D support” encod-
ing performs best. The “1-D support” encoding works by
allocating a Boolean variable xv

ij for every atomic relation v
on the edge between two intervals (i, j). The variable is true
if and only if the corresponding atomic relations holds be-
tween i and j in the final solution of a path-consistent atomic
network. Two sets of at-least-one (ALO) and at-most-one
(AMO) clauses are introduced to ensure that exactly one of
these atomic relations holds in the final solution:

• ALO:
∨

v∈Rij
xv

ij ; AMO:
∧

u,v∈Rij
¬xu

ij ∨ ¬xv
ij

To ensure the final network is path consistent, a set of sup-
port (SUP) clauses is introduced to encode that every trian-
gle (i, j, k) of the network (regarded as a complete graph) be
closed under composition and intersection:

• SUP:
∧

u∈Rik,v∈Rkj
¬xu

ik ∨ ¬xv
kj ∨ xw1

ij ∨ . . . ∨ xwm
ij

where {w1, . . . , wm} = Rij ∩ (u ◦ v).
In the point-based encoding, one includes the same set of

clauses as above, but for the point algebra (PA) instead of IA,
prescribing the relations between the endpoints of the inter-
vals. The variable xu

i−j− , for example, denotes the atomic
relation u between the starting points of intervals i and j
(substitute + for − for the ending points). To ensure sound-
ness, this encoding requires an additional set of clauses to for-
bid spurious IA relations introduced by the intervals-to-points
translation:

• ∧
r �∈Rij

¬xu
i−j− ∨ ¬xu

i−j+ ∨ ¬xu
i+j− ∨ ¬xu

i+j+

In their empirical study of IA networks of up to 100 nodes,
Pham et al. [2008] have shown that the “point-based 1-D
support” encoding used in conjunction with the MiniSat SAT
solver outperforms Nebel’s solver with its default settings on
many hard instances.

3 A new divide-and-conquer approach

As mentioned earlier, a weakness of the SAT-based approach
is the size of the encoding, which for large networks can out-
grow available memory or can make SAT solving otherwise
inefficient. In particular, many networks are not densely con-
nected (the missing edges implicitly represent universal rela-
tions) and the encoding must nevertheless treat the network
as a complete graph and generally include clauses for all its
triangles, leading to a cubic complexity in all cases.

Our solution to this issue starts with a new theoretical re-
sult about how two consistent networks sharing a common
sub-network can be amalgamated into a larger consistent net-
work, provided a particular property holds. We then present
a method that uses this result and recursively partitions a net-
work into small sub-networks before they are individually en-
coded into Boolean formulas, thus avoiding the need to in-
clude many triangles across the sub-networks that have edges
labeled by universal relations.

3.1 Amalgamation of networks

Previously, Li et al. [2008] analysed the problem of com-
bining networks in QSTR without introducing inconsisten-
cies. They introduced the Network Amalgamation Property
(NAP), which guarantees that two networks over a calculus
can be amalgamated into a larger network such that applying
path consistency to the resulting network does not change any
existing constraints. Here we consider a form of NAP where
we restrict the two networks and their amalgams to be atomic
networks. We call this the Atomic Network Amalgamation
Property (aNAP).

Definition 1 (Atomic Network Amalgamation Property)
A qualitative calculus A has aNAP if for any path-
consistent atomic networks N1 and N2 over A such that
VN1 ∩ VN2 = VN1∩N2 , N1 ∪ N2 has a path-consistent
atomic refinement.

Fig. 2 illustrates this property. Consider the networks N1

and N2 over a calculus A having aNAP shown in Fig. 2a,
with their intersection shown on the far left. Their union N1∪
N2 is shown in Fig. 2b, where the dotted edge represents the
universal relation and all other edges are those from N1 and
N2. The dotted edge is the only edge with a non-atomic label
and aNAP guarantees the existence of an atomic refinement
of the edge that results in a path-consistent atomic network.

Next we establish the following sufficient condition for
aNAP, and show that it is satisfied by both IA and PA.

Theorem 1 A qualitative calculus has aNAP if path consis-
tency implies strong n-consistency for all atomic networks of
size n over the calculus.

Proof. Given a qualitative calculus A satisfying the above
condition and two path-consistent atomic networks N1 and
N2 over A such that VN1∩VN2 = VN1∩N2 , let N0 = N1∩N2

574

Figure 2: Amalgamation of atomic networks.

and M = N1 ∪ N2. We wish to show that M is consistent,
which will establish aNAP. Take any consistent instantiation
α1 of N1, and consider its projection α0 on VN0 . Since N2 is
strongly |VN2 |-consistent, α0 can be extended to a complete
consistent instantiation α2 of N2. The extension will not con-
flict with α1 because none of the additional variables are in
VN1 (since VN1 ∩ VN2 = VN0). Hence the combination of α1

and α2 is a consistent instantiation of M .
Corollary 1 IA and PA have the aNAP property.

Proof. Path consistent atomic networks of size n in IA and
PA are guaranteed to be strongly n-consistent [van Beek and
Cohen, 1990]. Hence both have the aNAP property.

3.2 Partitioning networks: reverse amalgamation

The above results allow us to amalgamate two networks into a
larger network while preserving consistency. In this work we
are interested in a divide-and-conquer method for networks,
i.e., exactly the opposite of amalgamation: we want to take
a large network and partition it into smaller networks such
that their consistency can be used to decide the consistency of
the larger network. The following theorem, directly derivable
from the definition of aNAP, formalizes this idea.
Theorem 2 Given a qualitative calculus A for which aNAP
holds and for which path consistency implies consistency
of atomic networks, a network M over A is consistent if
there exist networks M1, M2 such that M1 ∪ M2 = M , M1

has a path-consistent atomic refinement N1, M2 has a path-
consistent atomic refinement N2, and N1∩N2 is a refinement
of M1 ∩ M2.

Given that aNAP holds for a qualitative calculus, this theo-
rem allows us to partition a network M into two overlapping
sub-networks N1 and N2 that satisfy VN1 ∩ VN2 = VN1∩N2

and N1 ∪ N2 = M . When deciding path consistency, we
can then disregard all triangles with at least one edge (la-
beled with the universal relation) between VN1 \ VN1∩N2 and
VN2 \ VN1∩N2 . This applies recursively to each sub-network
while we ensure that the intersection of the two sub-networks
from any previous level stays together (to retain soundness).

We can stop the partition at any stage (or continue until no
networks can be partitioned anymore) and then encode the re-
maining triangles using the existing SAT encoding of [Pham
et al., 2008]. Theorem 2 guarantees the soundness of the new
encoding; completeness is also retained as the new encoding
only disregards triangles in the network.

3.3 Partitioning networks: an example

In the following we give an example that demonstrates our
partitioning method and how it leads to a smaller SAT encod-

ing. Consider the network M of eight nodes {v1 . . . v8} over
either IA or PA in Fig. 3a, where edges labeled with univer-
sal relations are omitted. Recall that the basic SAT encoding
must view the network as a complete graph and hence con-
sider triangles over all edges including the invisible ones. Our
goal is to show how some of those triangles can be ignored.

Let us make a cut through M as shown by the dotted line,
breaking the network into the sub-network N2 (Fig. 3c) on
the right, and N1 (Fig. 3b) on the left. Note that we have
added to N1 all the endpoints of the cut edges from the other
side together with the incident edges; this is to ensure that
N1 ∪ N2 = M .

Theorem 2 implies that we need only encode N1 and N2

separately as long as we ensure that their respective solutions
agree over their intersection. This condition is automatically
ensured in the SAT encoding as long as we encode the inter-
section of N1 and N2 only once (while encoding the remain-
ders of N1 and N2 separately). This immediately allows us
to ignore a total of 21 triangles, namely those that include at
least one (invisible) edge from {v1, v2, v3} to {v7, v8}.

Figure 3: Partitioning a network.

Figure 4: Recursively partitioning a sub-network.

We can apply the same idea recursively to each of the sub-
networks. Let us proceed with N1 for example. In recursion
we need to take one additional measure, namely to ensure that
the intersection of the two sub-networks previously created
stays together. In this example, that is to say that we cannot
split v4, v5, and v6 when partitioning N1. Fig. 4.b gives a fea-
sible partitioning in this regard, allowing us to further ignore
3 triangles: (v1, v4, v5), (v1, v4, v6), and (v1, v5, v6).

In the end, we avoid encoding 24 out of the 56 triangles
compared with the original approach of [Pham et al., 2008].

575

3.4 Partitioning heuristics

In general there are multiple ways to partition a given net-
work. Our goal is to find “good” partitions, for example with
a small overlap and a good balance between the two sub-
networks, both of which tend to maximize the number of tri-
angles that can be disregarded. Our implementation uses the
software tool hMETIS [Karypis and Kumar, 1998]. hMETIS
heuristically minimizes the number of edges being cut while
producing a relatively balanced cut, which serves well to help
achieve our goal.2

4 Empirical evaluation

We benchmarked the performance of our partitioned SAT en-
coding with the original SAT encoding from [Pham et al.,
2008], as well as two constraint-based solvers, the one from
Nebel [1997] and the GQR-994 solver [Gantner et al., 2008],
with their best-performing heuristics enabled. In particular,
Nebel’s solver was run with options {static, global, queue}
enabled, which had been shown to vastly improve the perfor-
mance over default settings of the program in [Nebel, 1997].
MiniSat v2.070721 [Eén and Sörensson, 2003] was used to
solve the CNF formulas generated by the SAT encodings. All
our test instances were randomly generated networks around
the phase-transition region with a given number of nodes and
average degree, and an average label size of 6.5. Furthermore,
we tested only networks that were not found inconsistent by
path consistency. The tests were ran on 2.4 GHz processors
with a 2 hour time limit and a memory limit of 2 GB.

4.1 Smaller networks

In the first part of the experiment we tested 27,000 IA net-
works with from 50–100 nodes and degrees from 8–12. We
tested the event-based and point-based encodings of both the
original and partition-based approaches. Out of all the tests
only Nebel’s solver failed on 9 instances; every other solver
managed to solve all the instances.

Figure 5: Average number of clauses for networks of size
50–100, degree 8–12; 4500 instance per datapoint.

The size of the Boolean formula generated in terms of
number of clauses for each encoding is shown in Fig. 5. The
data confirms that point-based encoding generates smaller

2The parameters used in calling hMETIS are: options[] =
{1, 10, 1, 1, 1, 0, 0, 1, 0}, and ubFactor = 35; in recursion we set
options[6] = 1 and specify a set of nodes that needs to stay together.

Figure 6: Average CPU time against network degree, for net-
works of size 50–100; 3000 instance per datapoint.

CNF formulas than the event-based encoding for the same
network. It also shows that the number of clauses generated
from the our partitioned encoding is roughly half that from
the encoding of [Pham et al., 2008], and our event-based par-
titioned encoding produces about as many clauses as their
point-based encoding.

Fig. 6 compares the performance of all solvers. It confirms
that the constraint-based approaches of Nebel and GQR solve
easy instances very efficiently, whereas our point-based par-
titioned encoding dominates all other approaches in average
CPU time on the harder instances.

4.2 Larger networks

In the second part of the experiment we generated 100 net-
works of size 110 to 200 with an average label size 6.5 for
each degree from 8 to 12. In particular, we focused on the
phase-transition region which was identified to be between
degrees 10 and 11.5. We recorded the number of instances
solved by each solver within the time and memory limit, and
the time taken to solve them.

Figure 7: Number of solved instances against network degree.

Fig. 7 plots the number of instances solved against net-
work degree, showing that the partitioned encoding domi-
nates all other solvers for networks of any degree. The su-
perior scalability of the partitioned encoding is further illus-
trated in Fig. 8, which focuses on the hard region and plots
the number of instances solved against network size.

To further complete the picture, Fig. 9 shows the num-
ber of instances solved against CPU time. The constraint-

576

Figure 8: Number of solved instances against network size,
for the phase-transition region.

Figure 9: Number of solved instances against CPU time, for
the phase-transition region.

based approaches of Nebel and GQR solved a large number
of instances very quickly, but struggled to solve the harder in-
stances even when more time was available. The point-based
encoding of [Pham et al., 2008] performed better than Nebel’s
solver, but was inferior to GQR. Once again our point-based
partitioned encoding solved more instances than all the other
approaches, and solved most instances under 1 hour.

5 Conclusion and future work

Based on the idea of divide-and-conquer, we proposed a new
method for encoding constraint networks over IA into SAT.
The method relies on a special property of IA that allows two
atomic networks over IA to be consistently amalgamated over
a shared sub-network. We created a program that uses this
property to partition networks over IA to produce compact
SAT encodings. The empirical evaluation shows that our par-
titioned encoding dominates existing approaches in efficiency
and scalability on difficult IA instances.

In general, reduced formula size does not necessarily lead
to faster SAT solving. While our results indicate that detect-
ing and removing redundant clauses via partitioning is indeed
beneficial, a second interesting observation can be made re-
garding the correlation of encoding size and solution time:
As Pham et al. [2008] have previously observed and we
again confirmed, the point-based encoding in fact leads to
both smaller formulas and faster solutions than the event-

based encoding whether or not partitioning is employed. This
is apparently due to PA being a much smaller algebra—the
smaller composition table leads to fewer clauses required per
triangle for a given network. This indicates that SAT-based
approaches may be made more efficient if a network can be
translated into another one over a smaller calculus.

In this paper we demonstrated the usefulness of our method
for solving IA networks. However, our method is applicable
to any qualitative calculus for which path consistency implies
consistency for atomic networks and for which aNAP holds.
While the former property holds for many calculi, it is far less
known where the latter holds. We presented a sufficient con-
dition (Theorem 1) for aNAP, but it remains unclear whether
it is also necessary. Another question is whether a purely
syntactic and automated proof for aNAP exists, which would
allow us to automatically identify calculi to which our parti-
tioning method is applicable.

Acknowledgments

National ICT Australia is funded by the Australian Govern-
ment’s Backing Australia’s Ability initiative, in part through
the Australian Research Council.

References
[Allen, 1983] J. F. Allen. Maintaining knowledge about temporal

intervals. C. ACM, 26(11):832–843, 1983.
[van Beek and Cohen, 1990] P. van Beek and R. Cohen. Exact and

approximate reasoning about temporal relations. Comp. Intelli-
gence, 6:132–144, 1990.

[Condotta et al., 2007] J.-F. Condotta, G.Ligozat, and M. Saade.
Eligible and frozen constraints for solving temporal qualitative
constraint networks. CP’07, 806–814, 2007.

[Eén and Sörensson, 2003] N. Eén and N. Sörensson. An extensible
SAT-solver. SAT’03, 502–518, 2003.

[Gantner et al., 2008] Z. Gantner, M. Westphal, and S. Wölfl.
GQR—A fast reasoner for binary qualitative constraint calculi.
AAAI’08 WS on Spat. and Temp. Reasoning, 2008.

[Karypis and Kumar, 1998] G. Karypis and V. Kumar.
hMeTiS: A Hypergraph Partitioning Package, 1998.
http://www.cs.umn.edu/˜karypis.

[Ladkin and Reinefeld, 1992] P.B. Ladkin and A. Reinefeld. Effec-
tive solution of qualitative interval constraint problems. Artif.
Intell., 57(1):105–124, 1992.

[Li et al., 2008] J.J. Li, T. Kowalski, J. Renz, and S. Li. Combining
binary constraint networks in qualitative reasoning. ECAI’08,
515–519, 2008.

[Nebel and Bürckert, 1995] B. Nebel and H-J. Bürckert. Reason-
ing about temporal relations: A maximal tractable subclass of
Allen’s interval algebra. J. ACM, 42(1):43–66, 1995.

[Nebel, 1997] B. Nebel. Solving hard qualitative temporal reason-
ing problems: Evaluating the efficiency of using the ORD-horn
class. Constraints, 1(3):175–190, 1997.

[Pham et al., 2008] D.N. Pham, J. Thornton, and A. Sattar. Mod-
elling and solving temporal reasoning as propositional satisfia-
bility. Artif. Intell., 172(15):1752–1782, 2008.

[Renz and Li, 2008] J. Renz and J.J. Li. Automated complexity
proofs for qualitative spatial and temporal calculi. KR’08, 715–
723, 2008.

[SAT, 2008] SAT. The Annual SAT Competitions., 2008.
http://www.satcompetition.org/.

577

