Open In App

3 Sum – All Distinct Triplets with given Sum in an Array

Last Updated : 08 Jan, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array arr[], and an integer target, find all possible unique triplets in the array whose sum is equal to the given target value. We can return triplets in any order, but all the returned triplets should be internally sorted, i.e., for any triplet [q1, q2, q3], the condition q1 ≤ q2 ≤ q3 should hold.

Examples: 

Input: arr[] = {12, 3, 6, 1, 6, 9}, target = 24
Output: {{3, 9, 12}, {6, 6, 12}}
Explanation: There are two unique triplets that add up to 24:
3 + 9 + 12 = 24
6 + 6 + 12 = 24

Input: arr[] = {-2, 0, 1, 1, 2}, target = 10
Output: {}
Explanation: There is not triplet with sum 10.

[Naive Approach] – By Exploring all the triplets – O(n^4) Time and O(1) Space

We use three nested loops to generate all possible triplets, then check if their sum is equal to the target. If it is, we run an additional loop to check if the triplet is already in the result; if not, we add it.

C++
// C++ program to find all the distinct triplets having sum
// equal to given target by exploring all the triplets

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

vector<vector<int>> threeSum(vector<int>& arr, int target) {
    vector<vector<int>> res;
    int n = arr.size();

    // Generating all possible triplets
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
            for (int k = j + 1; k < n; k++) {
                if (arr[i] + arr[j] + arr[k] == target) {
                    vector<int> curr = {arr[i], arr[j], arr[k]};
                    sort(curr.begin(), curr.end()); 
        
                    // If triplet doesn't exist in the res, then only insert it.
                    if (find(res.begin(), res.end(), curr) == res.end()) 
                        res.push_back(curr);
                }
            }
        }
    }
    return res;
}

int main() {
    vector<int> arr = {12, 3, 6, 1, 6, 9};
    int target = 24;
    
    vector<vector<int>> ans = threeSum(arr, target);
    for(vector<int> triplet : ans)
        cout << triplet[0] << " " << triplet[1] << " " << triplet[2] << endl;
        
    return 0;
}
C
// C program to find all the distinct triplets having sum
// equal to given target by exploring all the triplets

#include <stdio.h>
#include <stdlib.h>

int compare(const void* a, const void* b) {
    return (*(int*)a - *(int*)b);
}

// Function to check whether this triplet already exist in res
int findTriplet(int res[][3], int* resSize, int triplet[]) {
    for (int i = 0; i < *resSize; i++) {
        if (res[i][0] == triplet[0] && res[i][1] == triplet[1] && res[i][2] == triplet[2]) {
            return 1;
        }
    }
    return 0;
}

void threeSum(int arr[], int n, int target, int res[][3], int* resSize) {
   
    // Generating all possible triplets
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
            for (int k = j + 1; k < n; k++) {
                if (arr[i] + arr[j] + arr[k] == target) {
                    int curr[3] = {arr[i], arr[j], arr[k]};
                    qsort(curr, 3, sizeof(int), compare); 

                    // If triplet doesn't exist in the res, then only insert it
                    if (!findTriplet(res, &resSize, curr)) {
                        res[*resSize][0] = curr[0];
                        res[*resSize][1] = curr[1];
                        res[*resSize][2] = curr[2];
                        (*resSize)++;
                    }
                }
            }
        }
    }
}

int main() {
    int arr[] = {12, 3, 6, 1, 6, 9};
    int n = sizeof(arr) / sizeof(arr[0]);
    int target = 24;
  	int res[100][3];  
    int resSize = 0;

    threeSum(arr, n, target, res, &resSize);  
  	for (int i = 0; i < resSize; i++)
        printf("%d %d %d\n", res[i][0], res[i][1], res[i][2]);
    return 0;
}
Java
// Java program to find all the distinct triplets having sum
// equal to given target by exploring all the triplets

import java.util.*;

class GfG {
    public static List<List<Integer>> threeSum(int[] arr, int target) {
        List<List<Integer>> res = new ArrayList<>();
        int n = arr.length;

        // Generating all possible triplets
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                for (int k = j + 1; k < n; k++) {
                    if (arr[i] + arr[j] + arr[k] == target) {
                        List<Integer> curr = Arrays.asList(arr[i], arr[j], arr[k]);
                        Collections.sort(curr);

                        // If triplet doesn't exist in the res, then only insert it.
                        if (!res.contains(curr)) {
                            res.add(curr);
                        }
                    }
                }
            }
        }
        return res;
    }

    public static void main(String[] args) {
        int[] arr = {12, 3, 6, 1, 6, 9};
        int target = 24;

        List<List<Integer>> ans = threeSum(arr, target);
        for (List<Integer> triplet : ans) {
            System.out.println(triplet.get(0) + " " + triplet.get(1) + " " + triplet.get(2));
        }
    }
}
Python
# Python program to find all the distinct triplets having sum
# equal to given target by exploring all the triplets

def threeSum(arr, target):
    res = []
    n = len(arr)

    # Generating all possible triplets
    for i in range(n):
        for j in range(i + 1, n):
            for k in range(j + 1, n):
                if arr[i] + arr[j] + arr[k] == target:
                    curr = sorted([arr[i], arr[j], arr[k]])

                    # If triplet doesn't exist in the res, then only insert it.
                    if curr not in res:
                        res.append(curr)
    return res

if __name__ == "__main__":
    arr = [12, 3, 6, 1, 6, 9]
    target = 24

    ans = threeSum(arr, target)
    for triplet in ans:
        print(triplet[0], triplet[1], triplet[2])
C#
// C# program to find all the distinct triplets having sum
// equal to given target by exploring all the triplets

using System;
using System.Collections.Generic;
using System.Linq;

class GfG {
    static List<List<int>> ThreeSum(int[] arr, int target) {
        List<List<int>> res = new List<List<int>>();
        int n = arr.Length;

        // Generating all possible triplets
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                for (int k = j + 1; k < n; k++) {
                    if (arr[i] + arr[j] + arr[k] == target) {
                        List<int> curr = new List<int> { arr[i], arr[j], arr[k] };
                        curr.Sort();

                        // If triplet doesn't exist in the res, then only insert it.
                        if (!res.Any(x => x.SequenceEqual(curr))) {
                            res.Add(curr);
                        }
                    }
                }
            }
        }
        return res;
    }

    static void Main() {
        int[] arr = { 12, 3, 6, 1, 6, 9 };
        int target = 24;

        List<List<int>> ans = ThreeSum(arr, target);
        foreach (var triplet in ans) {
            Console.WriteLine(triplet[0] + " " + triplet[1] + " " + triplet[2]);
        }
    }
}
JavaScript
// JavaScript program to find all the distinct triplets having sum
// equal to given target by exploring all the triplets

function threeSum(arr, target) {
    const res = [];
    const n = arr.length;

    // Generating all possible triplets
    for (let i = 0; i < n; i++) {
        for (let j = i + 1; j < n; j++) {
            for (let k = j + 1; k < n; k++) {
                if (arr[i] + arr[j] + arr[k] === target) {
                    const curr = [arr[i], arr[j], arr[k]].sort((a, b) => a - b);

                    // If triplet doesn't exist in the res, then only insert it.
                    if (!res.some(triplet => JSON.stringify(triplet) === JSON.stringify(curr))) {
                        res.push(curr);
                    }
                }
            }
        }
    }
    return res;
}

const arr = [12, 3, 6, 1, 6, 9];
const target = 24;

const ans = threeSum(arr, target);
ans.forEach(triplet => console.log(triplet.join(' ')));

Output
3 9 12
6 6 12

[Better Approach] – Using Hashing – O(n^2 log n) Time and O(n) Space

The idea is to maintain a hash set to track whether a particular element occurred in the array so far or not. As we traverse all pairs using two nested loops, for each pair {arr[i], arr[j]}, we check if the complement (target - arr[i] - arr[j]) is already in the set. If it is, we have found a triplet whose sum equals the target. Each valid triplet is inserted into ta hash set to avoid duplicates.

C++
// C++ program to find all unique triplets having sum
// equal to target using hashing

#include<bits/stdc++.h>
using namespace std;

vector<vector<int>> threeSum(vector<int>& arr, int target) {
    int n = arr.size();
    
    // Ideally we should us an unordered_set here, but C++
    // does not support vector as a key in an unordered_set
    // So we have used set to keep the code simple. However
    // set internally uses Red Black Tree and has O(Log n)
    // time complexities for operations
    set<vector<int>> resSet;
    
  	// Generating all pairs
    for (int i = 0; i < n; i++) {
        unordered_set<int> s;
        for(int j = i + 1; j < n; j++) {
            int complement = target - arr[i] - arr[j];
            
            // If the complement exist in the hash set then we 
            // have found the triplet with sum, target
            if(s.find(complement) != s.end()) {
                vector<int> curr = {arr[i], arr[j], complement};
                sort(curr.begin(), curr.end());
                resSet.insert(curr);
            }
            
            s.insert(arr[j]);
        }
    }

    return vector<vector<int>>(resSet.begin(), resSet.end());
}

int main() {
    vector<int> arr = {12, 3, 6, 1, 6, 9};
    int target = 24;
    
    vector<vector<int>> ans = threeSum(arr, target);
    for(vector<int> triplet : ans)
        cout << triplet[0] << " " << triplet[1] << " " << triplet[2] << endl;
        
    return 0;
}
Java
// Java program to find all unique triplets having sum
// equal to target using hashing

import java.util.*;

class GfG {
    static List<List<Integer>> threeSum(int[] arr, int target) {
        int n = arr.length;
        
        // Set to handle duplicates
        Set<List<Integer>> resSet = new HashSet<>();
        
        // Generating all pairs
        for (int i = 0; i < n; i++) {
            Set<Integer> s = new HashSet<>();
            for (int j = i + 1; j < n; j++) {
                int complement = target - arr[i] - arr[j];
                
                // If the complement exists in the hash set then we 
                // have found the triplet with sum, target
                if (s.contains(complement)) {
                    List<Integer> curr = Arrays.asList(arr[i], arr[j], complement);
                    Collections.sort(curr);
                    resSet.add(curr);
                }
                
                s.add(arr[j]);
            }
        }

        return new ArrayList<>(resSet);
    }

    public static void main(String[] args) {
        int[] arr = {12, 3, 6, 1, 6, 9};
        int target = 24;
        
        List<List<Integer>> ans = threeSum(arr, target);
        for (List<Integer> triplet : ans) {
            System.out.println(triplet.get(0) + " " + triplet.get(1) + " " + triplet.get(2));
        }
    }
}
Python
# Python program to find all unique triplets having sum
# equal to target using hashing

def threeSum(arr, target):
    n = len(arr)
    
    # Set to handle duplicates
    resSet = set()
    
    # Generating all pairs
    for i in range(n):
        s = set()
        for j in range(i + 1, n):
            complement = target - arr[i] - arr[j]
            
            # If the complement exists in the hash set then we 
            # have found the triplet with sum, target
            if complement in s:
                curr = tuple(sorted([arr[i], arr[j], complement]))
                resSet.add(curr)
                
            s.add(arr[j])
    
    return list(resSet)

if __name__ == "__main__":
    arr = [12, 3, 6, 1, 6, 9]
    target = 24
    
    ans = threeSum(arr, target)
    for triplet in ans:
        print(triplet[0], triplet[1], triplet[2])
C#
// C# program to find all unique triplets having sum
// equal to target using hashing

using System;
using System.Collections.Generic;

class GfG {
    static List<List<int>> ThreeSum(int[] arr, int target) {
        int n = arr.Length;

        // Set to handle duplicates
        HashSet<List<int>> resSet = new HashSet<List<int>>(new ListComparer());

        // Generating all pairs
        for (int i = 0; i < n; i++) {
            HashSet<int> s = new HashSet<int>();
            for (int j = i + 1; j < n; j++) {
                int complement = target - arr[i] - arr[j];

                // If the complement exists in the hash set then we 
                // have found the triplet with sum, target
                if (s.Contains(complement)) {
                    List<int> curr = new List<int> { arr[i], arr[j], complement };
                    curr.Sort();
                    resSet.Add(curr);
                }

                s.Add(arr[j]);
            }
        }

        return new List<List<int>>(resSet);
    }

    static void Main() {
        int[] arr = { 12, 3, 6, 1, 6, 9 };
        int target = 24;

        List<List<int>> ans = ThreeSum(arr, target);
        foreach (var triplet in ans) {
            Console.WriteLine($"{triplet[0]} {triplet[1]} {triplet[2]}");
        }
    }

    class ListComparer : IEqualityComparer<List<int>> {
        public bool Equals(List<int> x, List<int> y) {
            if (x.Count != y.Count) return false;
            for (int i = 0; i < x.Count; i++) {
                if (x[i] != y[i]) return false;
            }
            return true;
        }

        public int GetHashCode(List<int> obj) {
            int hash = 17;
            foreach (int i in obj) {
                hash = hash * 31 + i.GetHashCode();
            }
            return hash;
        }
    }
}
JavaScript
// JavaScript program to find all unique triplets having sum
// equal to target using hashing

function threeSum(arr, target) {
    const n = arr.length;
    
    // Set to handle duplicates
    const resSet = new Set();
    
    // Generating all pairs
    for (let i = 0; i < n; i++) {
        const s = new Set();
        for (let j = i + 1; j < n; j++) {
            const complement = target - arr[i] - arr[j];
            
            // If the complement exists in the hash set then we 
            // have found the triplet with sum, target
            if (s.has(complement)) {
                const curr = [arr[i], arr[j], complement];
                curr.sort((a, b) => a - b);
                resSet.add(curr.toString());
            }
            
            s.add(arr[j]);
        }
    }

    return Array.from(resSet).map(triplet => triplet.split(',').map(Number));
}

const arr = [12, 3, 6, 1, 6, 9];
const target = 24;

const ans = threeSum(arr, target);
for (const triplet of ans) {
    console.log(triplet[0], triplet[1], triplet[2]);
}

Output
3 9 12
6 6 12

[Expected Approach] – Using Two Pointers Technique – O(n^2) Time and O(1) Space

The idea is to sort the array and use two pointers technique to find all the triplets. We will traverse the array and fix the first element of the triplet then, Initialize two pointers at the beginning and end of the remaining array. Now, compare the sum of elements at these pointers:

  • If sum = target, store the triplet and skip duplicates to ensure they are distinct.
  • If sum < target, we move the left pointer towards right.
  • If sum > target, we move the right pointer towards left.
C++
// C++ program to find all the distinct triplets having sum
// equal to given target using two pointer technique

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

vector<vector<int>> threeSum(vector<int>& arr, int target) {
    vector<vector<int>> res;
    int n = arr.size();
    
    sort(arr.begin(), arr.end());

    for (int i = 0; i < n; i++) {
      
        // Skip duplicates for i
        if (i > 0 && arr[i] == arr[i - 1]) continue;
        
        // Two pointer technique
        int j = i + 1, k = n - 1;
        while(j < k) {
            int sum = arr[i] + arr[j] + arr[k];
            if(sum == target) {
                vector<int> curr = {arr[i], arr[j], arr[k]};
                res.push_back(curr);
                j++;
                k--;
                
                // Skip duplicates for j and k
                while(j < n && arr[j] == arr[j - 1]) j++;
                while(k > j && arr[k] == arr[k + 1]) k--; 
            }
            
            else if(sum < target) {
                j++;
            }
            else {
                k--;
            }
        }
    }
    return res;
}

int main() {
    vector<int> arr = {12, 3, 6, 1, 6, 9};
    int target = 24;
    
    vector<vector<int>> ans = threeSum(arr, target);
    for(vector<int> triplet : ans)
        cout << triplet[0] << " " << triplet[1] << " " << triplet[2] << endl;
        
    return 0;
}
Java
// Java program to find all the distinct triplets having sum
// equal to target using two pointer technique

import java.util.*;

class GfG {
    static List<List<Integer>> threeSum(int[] arr, int target) {
        List<List<Integer>> res = new ArrayList<>();
        int n = arr.length;

        Arrays.sort(arr);

        for (int i = 0; i < n; i++) {
          
            // Skip duplicates for i
            if (i > 0 && arr[i] == arr[i - 1]) continue;

            // Two pointer technique
            int j = i + 1, k = n - 1;
            while (j < k) {
                int sum = arr[i] + arr[j] + arr[k];
                if (sum == target) {
                    List<Integer> curr = Arrays.asList(arr[i], arr[j], arr[k]);
                    res.add(curr);
                    j++;
                    k--;

                    // Skip duplicates for j and k
                    while (j < n && arr[j] == arr[j - 1]) j++;
                    while (k > j && arr[k] == arr[k + 1]) k--;
                } 
              	else if (sum < target) { 
                    j++;
                }
              	else { 
                    k--;
                }
            }
        }
        return res;
    }

    public static void main(String[] args) {
        int[] arr = {12, 3, 6, 1, 6, 9};
        int target = 24;

        List<List<Integer>> ans = threeSum(arr, target);
        for (List<Integer> triplet : ans) {
            System.out.println(triplet.get(0) + " " + triplet.get(1) + " " + triplet.get(2));
        }
    }
}
Python
# Python program to find all the distinct triplets having sum
# equal to target using two pointer technique

def three_sum(arr, target):
    res = []
    n = len(arr)

    arr.sort()

    for i in range(n):
      
        # Skip duplicates for i
        if i > 0 and arr[i] == arr[i - 1]:
            continue

        # Two pointer technique
        j, k = i + 1, n - 1
        while j < k:
            sum_value = arr[i] + arr[j] + arr[k]
            if sum_value == target:
                res.append([arr[i], arr[j], arr[k]])
                j += 1
                k -= 1

                # Skip duplicates for j and k
                while j < n and arr[j] == arr[j - 1]:
                    j += 1
                while k > j and arr[k] == arr[k + 1]:
                    k -= 1
            elif sum_value < target:
                j += 1
            else:
                k -= 1
    return res

arr = [12, 3, 6, 1, 6, 9]
target = 24

ans = three_sum(arr, target)
for triplet in ans:
    print(f"{triplet[0]} {triplet[1]} {triplet[2]}")
C#
// C# program to find all the distinct triplets having sum
// equal to target using two pointer technique

using System;
using System.Collections.Generic;

class GfG {
    static List<List<int>> ThreeSum(int[] arr, int target) {
        List<List<int>> res = new List<List<int>>();
        int n = arr.Length;

        Array.Sort(arr);

        for (int i = 0; i < n; i++) {
            // Skip duplicates for i
            if (i > 0 && arr[i] == arr[i - 1]) continue;

            // Two pointer technique
            int j = i + 1, k = n - 1;
            while (j < k) {
                int sum = arr[i] + arr[j] + arr[k];
                if (sum == target) {
                    List<int> curr = new List<int> { arr[i], arr[j], arr[k] };
                    res.Add(curr);
                    j++;
                    k--;

                    // Skip duplicates for j and k
                    while (j < n && arr[j] == arr[j - 1]) j++;
                    while (k > j && arr[k] == arr[k + 1]) k--;
                } 
              	else if (sum < target) {
                    j++;
                } 
              	else {
                    k--;
                }
            }
        }
        return res;
    }

    static void Main() {
        int[] arr = { 12, 3, 6, 1, 6, 9 };
        int target = 24;

        List<List<int>> ans = ThreeSum(arr, target);
        foreach (var triplet in ans) {
            Console.WriteLine($"{triplet[0]} {triplet[1]} {triplet[2]}");
        }
    }
}
JavaScript
// JavaScript program to find all the distinct triplets having sum
// equal to target using two pointer technique

function threeSum(arr, target) {
    let res = [];
    let n = arr.length;

    arr.sort((a, b) => a - b);

    for (let i = 0; i < n; i++) {
        // Skip duplicates for i
        if (i > 0 && arr[i] === arr[i - 1]) continue;

        // Two pointer technique
        let j = i + 1, k = n - 1;
        while (j < k) {
            let sum = arr[i] + arr[j] + arr[k];
            if (sum === target) {
                res.push([arr[i], arr[j], arr[k]]);
                j++;
                k--;

                // Skip duplicates for j and k
                while (j < n && arr[j] === arr[j - 1]) j++;
                while (k > j && arr[k] === arr[k + 1]) k--;
            } 
            else if (sum < target) {
                j++;
            } 
            else {
                k--;
            }
        }
    }
    return res;
}

const arr = [12, 3, 6, 1, 6, 9];
const target = 24;

const ans = threeSum(arr, target);
ans.forEach(triplet => {
    console.log(`${triplet[0]} ${triplet[1]} ${triplet[2]}`);
});

Output
3 9 12
6 6 12


Next Article
Article Tags :
Practice Tags :

Similar Reads