Open In App

Two Dimensional Binary Indexed Tree or Fenwick Tree

Last Updated : 30 Nov, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

Prerequisite - Fenwick Tree

We know that to answer range sum queries on a 1-D array efficiently, binary indexed tree (or Fenwick Tree) is the best choice (even better than segment tree due to less memory requirements and a little faster than segment tree).

Can we answer sub-matrix sum queries efficiently using Binary Indexed Tree ?

The answer is yes. This is possible using a 2D BIT which is nothing but an array of 1D BIT. 

Algorithm:

We consider the below example. Suppose we have to find the sum of all numbers inside the highlighted area:

fenwick tree

We assume the origin of the matrix at the bottom - O.Then a 2D BIT exploits the fact that-

Sum under the marked area = Sum(OB) - Sum(OD) - 
                            Sum(OA) + Sum(OC) 

In our program, we use the getSum(x, y) function which finds the sum of the matrix from (0, 0) to (x, y). 
Hence the below formula : 

Sum under the marked area = Sum(OB) - Sum(OD) - 
                            Sum(OA) + Sum(OC) 

The above formula gets reduced to,

Query(x1,y1,x2,y2) = getSum(x2, y2) - 
                     getSum(x2, y1-1) - 
                     getSum(x1-1, y2) + 
                     getSum(x1-1, y1-1) 

where, 
x1, y1 = x and y coordinates of C 
x2, y2 = x and y coordinates of B
The updateBIT(x, y, val) function updates all the elements under the region – (x, y) to (N, M) where, 
N = maximum X co-ordinate of the whole matrix. 
M = maximum Y co-ordinate of the whole matrix.
The rest procedure is quite similar to that of 1D Binary Indexed Tree.

Below is the C++ implementation of 2D indexed tree 

C++
/* C++ program to implement 2D Binary Indexed Tree

2D BIT is basically a BIT where each element is another BIT.
Updating by adding v on (x, y) means it's effect will be found
throughout the rectangle [(x, y), (max_x, max_y)],
and query for (x, y) gives you the result of the rectangle
[(0, 0), (x, y)], assuming the total rectangle is
[(0, 0), (max_x, max_y)]. So when you query and update on
this BIT,you have to be careful about how many times you are
subtracting a rectangle and adding it. Simple set union formula
works here.

So if you want to get the result of a specific rectangle
[(x1, y1), (x2, y2)], the following steps are necessary:

Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) -
                     getSum(x1-1, y2)+getSum(x1-1, y1-1)

Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed
in the rectangle with bottom-left corner's co-ordinates
(x1, y1) and top-right corner's co-ordinates - (x2, y2)

Constraints -> x1<=x2 and y1<=y2

    /\
 y  |
    |           --------(x2,y2)
    |          |       |
    |          |       |
    |          |       |
    |          ---------
    |       (x1,y1)
    |
    |___________________________
   (0, 0)                   x-->

In this program we have assumed a square matrix. The
program can be easily extended to a rectangular one. */

#include<bits/stdc++.h>
using namespace std;

#define N 4 // N-->max_x and max_y

// A structure to hold the queries
struct Query
{
    int x1, y1; // x and y co-ordinates of bottom left
    int x2, y2; // x and y co-ordinates of top right
};

// A function to update the 2D BIT
void updateBIT(int BIT[][N+1], int x, int y, int val)
{
    for (; x <= N; x += (x & -x))
    {
        // This loop update all the 1D BIT inside the
        // array of 1D BIT = BIT[x]
        for (int yy=y; yy <= N; yy += (yy & -yy))
            BIT[x][yy] += val;
    }
    return;
}

// A function to get sum from (0, 0) to (x, y)
int getSum(int BIT[][N+1], int x, int y)
{
    int sum = 0;

    for(; x > 0; x -= x&-x)
    {
        // This loop sum through all the 1D BIT
        // inside the array of 1D BIT = BIT[x]
        for(int yy=y; yy > 0; yy -= yy&-yy)
        {
            sum += BIT[x][yy];
        }
    }
    return sum;
}

// A function to create an auxiliary matrix
// from the given input matrix
void constructAux(int mat[][N], int aux[][N+1])
{
    // Initialise Auxiliary array to 0
    for (int i=0; i<=N; i++)
        for (int j=0; j<=N; j++)
            aux[i][j] = 0;

    // Construct the Auxiliary Matrix
    for (int j=1; j<=N; j++)
        for (int i=1; i<=N; i++)
            aux[i][j] = mat[N-j][i-1];

    return;
}

// A function to construct a 2D BIT
void construct2DBIT(int mat[][N], int BIT[][N+1])
{
    // Create an auxiliary matrix
    int aux[N+1][N+1];
    constructAux(mat, aux);

    // Initialise the BIT to 0
    for (int i=1; i<=N; i++)
        for (int j=1; j<=N; j++)
            BIT[i][j] = 0;

    for (int j=1; j<=N; j++)
    {
        for (int i=1; i<=N; i++)
        {
            // Creating a 2D-BIT using update function
            // everytime we/ encounter a value in the
            // input 2D-array
            int v1 = getSum(BIT, i, j);
            int v2 = getSum(BIT, i, j-1);
            int v3 = getSum(BIT, i-1, j-1);
            int v4 = getSum(BIT, i-1, j);

            // Assigning a value to a particular element
            // of 2D BIT
            updateBIT(BIT, i, j, aux[i][j]-(v1-v2-v4+v3));
        }
    }

    return;
}

// A function to answer the queries
void answerQueries(Query q[], int m, int BIT[][N+1])
{
    for (int i=0; i<m; i++)
    {
        int x1 = q[i].x1 + 1;
        int y1 = q[i].y1 + 1;
        int x2 = q[i].x2 + 1;
        int y2 = q[i].y2 + 1;

        int ans = getSum(BIT, x2, y2)-getSum(BIT, x2, y1-1)-
                  getSum(BIT, x1-1, y2)+getSum(BIT, x1-1, y1-1);

        printf ("Query(%d, %d, %d, %d) = %d\n",
                q[i].x1, q[i].y1, q[i].x2, q[i].y2, ans);
    }
    return;
}

// Driver program
int main()
{
    int mat[N][N] = {{1, 2, 3, 4},
                    {5, 3, 8, 1},
                    {4, 6, 7, 5},
                    {2, 4, 8, 9}};

    // Create a 2D Binary Indexed Tree
    int BIT[N+1][N+1];
    construct2DBIT(mat, BIT);

    /* Queries of the form - x1, y1, x2, y2
       For example the query- {1, 1, 3, 2} means the sub-matrix-
    y
    /\
 3  |       1 2 3 4      Sub-matrix
 2  |       5 3 8 1      {1,1,3,2}      --->     3 8 1
 1  |       4 6 7 5                                 6 7 5
 0  |       2 4 8 9
    |
  --|------ 0 1 2 3 ----> x
    |

    Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30

    */

    Query q[] = {{1, 1, 3, 2}, {2, 3, 3, 3}, {1, 1, 1, 1}};
    int m = sizeof(q)/sizeof(q[0]);

    answerQueries(q, m, BIT);

    return(0);
}
Java
/* Java program to implement 2D Binary Indexed Tree 

2D BIT is basically a BIT where each element is another BIT. 
Updating by adding v on (x, y) means it's effect will be found 
throughout the rectangle [(x, y), (max_x, max_y)], 
and query for (x, y) gives you the result of the rectangle 
[(0, 0), (x, y)], assuming the total rectangle is 
[(0, 0), (max_x, max_y)]. So when you query and update on 
this BIT,you have to be careful about how many times you are 
subtracting a rectangle and adding it. Simple set union formula 
works here. 

So if you want to get the result of a specific rectangle 
[(x1, y1), (x2, y2)], the following steps are necessary: 

Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) - 
                    getSum(x1-1, y2)+getSum(x1-1, y1-1) 

Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed 
in the rectangle with bottom-left corner's co-ordinates 
(x1, y1) and top-right corner's co-ordinates - (x2, y2) 

Constraints -> x1<=x2 and y1<=y2 

    /\ 
y | 
    |     --------(x2,y2) 
    |     | | 
    |     | | 
    |     | | 
    |     --------- 
    | (x1,y1) 
    | 
    |___________________________ 
(0, 0)             x--> 

In this program we have assumed a square matrix. The 
program can be easily extended to a rectangular one. */
class GFG
{ 
static final int N = 4; // N-.max_x and max_y 

// A structure to hold the queries 
static class Query 
{ 
    int x1, y1; // x and y co-ordinates of bottom left 
    int x2, y2; // x and y co-ordinates of top right 

        public Query(int x1, int y1, int x2, int y2)
        {
            this.x1 = x1;
            this.y1 = y1;
            this.x2 = x2;
            this.y2 = y2;
        }
        
}; 

// A function to update the 2D BIT 
static void updateBIT(int BIT[][], int x,
                      int y, int val) 
{ 
    for (; x <= N; x += (x & -x)) 
    { 
        // This loop update all the 1D BIT inside the 
        // array of 1D BIT = BIT[x] 
        for (; y <= N; y += (y & -y)) 
            BIT[x][y] += val; 
    } 
    return; 
} 

// A function to get sum from (0, 0) to (x, y) 
static int getSum(int BIT[][], int x, int y) 
{ 
    int sum = 0; 

    for(; x > 0; x -= x&-x) 
    { 
        // This loop sum through all the 1D BIT 
        // inside the array of 1D BIT = BIT[x] 
        for(; y > 0; y -= y&-y) 
        { 
            sum += BIT[x][y]; 
        } 
    } 
    return sum; 
} 

// A function to create an auxiliary matrix 
// from the given input matrix 
static void constructAux(int mat[][], int aux[][]) 
{ 
    // Initialise Auxiliary array to 0 
    for (int i = 0; i <= N; i++) 
        for (int j = 0; j <= N; j++) 
            aux[i][j] = 0; 

    // Construct the Auxiliary Matrix 
    for (int j = 1; j <= N; j++) 
        for (int i = 1; i <= N; i++) 
            aux[i][j] = mat[N - j][i - 1]; 

    return; 
} 

// A function to construct a 2D BIT 
static void construct2DBIT(int mat[][],
                           int BIT[][]) 
{ 
    // Create an auxiliary matrix 
    int [][]aux = new int[N + 1][N + 1]; 
    constructAux(mat, aux); 

    // Initialise the BIT to 0 
    for (int i = 1; i <= N; i++) 
        for (int j = 1; j <= N; j++) 
            BIT[i][j] = 0; 

    for (int j = 1; j <= N; j++) 
    { 
        for (int i = 1; i <= N; i++) 
        { 
            // Creating a 2D-BIT using update function 
            // everytime we/ encounter a value in the 
            // input 2D-array 
            int v1 = getSum(BIT, i, j); 
            int v2 = getSum(BIT, i, j - 1); 
            int v3 = getSum(BIT, i - 1, j - 1); 
            int v4 = getSum(BIT, i - 1, j); 

            // Assigning a value to a particular element 
            // of 2D BIT 
            updateBIT(BIT, i, j, aux[i][j] - 
                     (v1 - v2 - v4 + v3)); 
        } 
    } 
    return; 
} 

// A function to answer the queries 
static void answerQueries(Query q[], int m, int BIT[][]) 
{ 
    for (int i = 0; i < m; i++) 
    { 
        int x1 = q[i].x1 + 1; 
        int y1 = q[i].y1 + 1; 
        int x2 = q[i].x2 + 1; 
        int y2 = q[i].y2 + 1; 

        int ans = getSum(BIT, x2, y2) -
                  getSum(BIT, x2, y1 - 1) - 
                  getSum(BIT, x1 - 1, y2) +
                  getSum(BIT, x1 - 1, y1 - 1); 

        System.out.printf("Query(%d, %d, %d, %d) = %d\n", 
                q[i].x1, q[i].y1, q[i].x2, q[i].y2, ans); 
    } 
    return; 
} 

// Driver Code
public static void main(String[] args) 
{ 
    int mat[][] = { {1, 2, 3, 4}, 
                    {5, 3, 8, 1}, 
                    {4, 6, 7, 5}, 
                    {2, 4, 8, 9} }; 

    // Create a 2D Binary Indexed Tree 
    int [][]BIT = new int[N + 1][N + 1]; 
    construct2DBIT(mat, BIT); 

    /* Queries of the form - x1, y1, x2, y2 
    For example the query- {1, 1, 3, 2} means the sub-matrix- 
        y 
        /\ 
    3 | 1 2 3 4     Sub-matrix 
    2 | 5 3 8 1     {1,1,3,2} --.     3 8 1 
    1 | 4 6 7 5                                 6 7 5 
    0 | 2 4 8 9 
        | 
    --|------ 0 1 2 3 ---. x 
        | 
    
        Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30 
    */
    Query q[] = {new Query(1, 1, 3, 2), 
                 new Query(2, 3, 3, 3), 
                 new Query(1, 1, 1, 1)}; 
    int m = q.length; 

    answerQueries(q, m, BIT); 
}
} 

// This code is contributed by 29AjayKumar
Python3
'''Python3  program to implement 2D Binary Indexed Tree 
  
2D BIT is basically a BIT where each element is another BIT. 
Updating by adding v on (x, y) means it's effect will be found 
throughout the rectangle [(x, y), (max_x, max_y)], 
and query for (x, y) gives you the result of the rectangle 
[(0, 0), (x, y)], assuming the total rectangle is 
[(0, 0), (max_x, max_y)]. So when you query and update on 
this BIT,you have to be careful about how many times you are 
subtracting a rectangle and adding it. Simple set union formula 
works here. 
  
So if you want to get the result of a specific rectangle 
[(x1, y1), (x2, y2)], the following steps are necessary: 
  
Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) - 
                    getSum(x1-1, y2)+getSum(x1-1, y1-1) 
  
Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed 
in the rectangle with bottom-left corner's co-ordinates 
(x1, y1) and top-right corner's co-ordinates - (x2, y2) 
  
Constraints -> x1<=x2 and y1<=y2 
  
    /\ 
y | 
    |     --------(x2,y2) 
    |     | | 
    |     | | 
    |     | | 
    |     --------- 
    | (x1,y1) 
    | 
    |___________________________ 
(0, 0)             x--> 
  
In this program we have assumed a square matrix. The 
program can be easily extended to a rectangular one. '''

N = 4 # N-.max_x and max_y 

# A structure to hold the queries 
class Query:

    def __init__(self, x1,y1,x2,y2):
    
        self.x1 = x1;
        self.y1 = y1;
        self.x2 = x2;
        self.y2 = y2;


# A function to update the 2D BIT 
def updateBIT(BIT,x,y,val):
    
    while x <= N:
    
        # This loop update all the 1D BIT inside the 
        # array of 1D BIT = BIT[x] 
        while y <= N:
            BIT[x][y] += val;
            y += (y & -y)
        
        x += (x & -x)
    
    return; 


# A function to get sum from (0, 0) to (x, y) 
def getSum(BIT,x,y):

    sum = 0; 
    
    while x > 0:
        # This loop sum through all the 1D BIT 
        # inside the array of 1D BIT = BIT[x] 
        while y > 0:

            sum += BIT[x][y]; 
            y -= y&-y
        
        x -= x&-x
    
    return sum; 


# A function to create an auxiliary matrix 
# from the given input matrix 
def constructAux(mat,aux):
    # Initialise Auxiliary array to 0 
    for  i in range(N + 1):
        for j in range(N + 1):
            aux[i][j] = 0
  
    # Construct the Auxiliary Matrix 
    for j in range(1, N + 1):
        for i in range(1, N + 1):
            aux[i][j] = mat[N - j][i - 1];
  
    return 


# A function to construct a 2D BIT 
def construct2DBIT(mat,BIT):
    # Create an auxiliary matrix 
    aux = [None for i in range(N + 1)]
    for i in range(N + 1) : 
    
        aux[i]= [None for i in range(N + 1)]
    
    constructAux(mat, aux)
  
    # Initialise the BIT to 0 
    for i in range(1, N + 1): 
        for j in range(1, N + 1): 
            BIT[i][j] = 0; 
  
    for j in range(1, N + 1): 
    
        for i in range(1, N + 1): 
        
            # Creating a 2D-BIT using update function 
            # everytime we/ encounter a value in the 
            # input 2D-array 
            v1 = getSum(BIT, i, j); 
            v2 = getSum(BIT, i, j - 1); 
            v3 = getSum(BIT, i - 1, j - 1); 
            v4 = getSum(BIT, i - 1, j); 
  
            # Assigning a value to a particular element 
            # of 2D BIT 
            updateBIT(BIT, i, j, aux[i][j] - 
                     (v1 - v2 - v4 + v3)); 
        
    
    return; 


# A function to answer the queries 
def answerQueries(q,m,BIT):
    
    for i in range(m):
     
        x1 = q[i].x1 + 1; 
        y1 = q[i].y1 + 1; 
        x2 = q[i].x2 + 1; 
        y2 = q[i].y2 + 1; 
  
        ans = getSum(BIT, x2, y2) - \
                  getSum(BIT, x2, y1 - 1) - \
                  getSum(BIT, x1 - 1, y2) + \
                  getSum(BIT, x1 - 1, y1 - 1); 
  
        print("Query (", q[i].x1, ", ", q[i].y1, ", ", q[i].x2, ", " , q[i].y2, ") = " ,ans, sep = "") 
    
    return; 


# Driver Code
mat= [[1, 2, 3, 4], 
                    [5, 3, 8, 1], 
                    [4, 6, 7, 5], 
                    [2, 4, 8, 9]]; 
  
# Create a 2D Binary Indexed Tree 
BIT = [None for i in range(N + 1)]
for i in range(N + 1):

    BIT[i]= [None for i in range(N + 1)]
    for j in range(N + 1):
            BIT[i][j]=0
        
    
construct2DBIT(mat, BIT); 
  
''' Queries of the form - x1, y1, x2, y2 
    For example the query- {1, 1, 3, 2} means the sub-matrix- 
        y 
        /\ 
    3 | 1 2 3 4     Sub-matrix 
    2 | 5 3 8 1     {1,1,3,2} --.     3 8 1 
    1 | 4 6 7 5                                 6 7 5 
    0 | 2 4 8 9 
        | 
    --|------ 0 1 2 3 ---. x 
        | 
      
        Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30 
    
    '''
q = [Query(1, 1, 3, 2), Query(2, 3, 3, 3), Query(1, 1, 1, 1)]; 
m = len(q)
  
answerQueries(q, m, BIT); 

# This code is contributed by phasing17
C#
/* C# program to implement 2D Binary Indexed Tree 

2D BIT is basically a BIT where each element is another BIT. 
Updating by.Adding v on (x, y) means it's effect will be found 
throughout the rectangle [(x, y), (max_x, max_y)], 
and query for (x, y) gives you the result of the rectangle 
[(0, 0), (x, y)], assuming the total rectangle is 
[(0, 0), (max_x, max_y)]. So when you query and update on 
this BIT,you have to be careful about how many times you are 
subtracting a rectangle and.Adding it. Simple set union formula 
works here. 

So if you want to get the result of a specific rectangle 
[(x1, y1), (x2, y2)], the following steps are necessary: 

Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) - 
                    getSum(x1-1, y2)+getSum(x1-1, y1-1) 

Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed 
in the rectangle with bottom-left corner's co-ordinates 
(x1, y1) and top-right corner's co-ordinates - (x2, y2) 

Constraints -> x1<=x2 and y1<=y2 

    /\ 
y | 
    |     --------(x2,y2) 
    |     | | 
    |     | | 
    |     | | 
    |     --------- 
    | (x1,y1) 
    | 
    |___________________________ 
(0, 0)             x--> 

In this program we have assumed a square matrix. The 
program can be easily extended to a rectangular one. */
using System;

class GFG
{ 
static readonly int N = 4; // N-.max_x and max_y 

// A structure to hold the queries 
public class Query 
{ 
    public int x1, y1; // x and y co-ordinates of bottom left 
    public int x2, y2; // x and y co-ordinates of top right 

        public Query(int x1, int y1, int x2, int y2)
        {
            this.x1 = x1;
            this.y1 = y1;
            this.x2 = x2;
            this.y2 = y2;
        }
        
}; 

// A function to update the 2D BIT 
static void updateBIT(int [,]BIT, int x,
                    int y, int val) 
{ 
    for (; x <= N; x += (x & -x)) 
    { 
        // This loop update all the 1D BIT inside the 
        // array of 1D BIT = BIT[x] 
        for (; y <= N; y += (y & -y)) 
            BIT[x,y] += val; 
    } 
    return; 
} 

// A function to get sum from (0, 0) to (x, y) 
static int getSum(int [,]BIT, int x, int y) 
{ 
    int sum = 0; 

    for(; x > 0; x -= x&-x) 
    { 
        // This loop sum through all the 1D BIT 
        // inside the array of 1D BIT = BIT[x] 
        for(; y > 0; y -= y&-y) 
        { 
            sum += BIT[x, y]; 
        } 
    } 
    return sum; 
} 

// A function to create an auxiliary matrix 
// from the given input matrix 
static void constructAux(int [,]mat, int [,]aux) 
{ 
    // Initialise Auxiliary array to 0 
    for (int i = 0; i <= N; i++) 
        for (int j = 0; j <= N; j++) 
            aux[i, j] = 0; 

    // Construct the Auxiliary Matrix 
    for (int j = 1; j <= N; j++) 
        for (int i = 1; i <= N; i++) 
            aux[i, j] = mat[N - j, i - 1]; 

    return; 
} 

// A function to construct a 2D BIT 
static void construct2DBIT(int [,]mat,
                        int [,]BIT) 
{ 
    // Create an auxiliary matrix 
    int [,]aux = new int[N + 1, N + 1]; 
    constructAux(mat, aux); 

    // Initialise the BIT to 0 
    for (int i = 1; i <= N; i++) 
        for (int j = 1; j <= N; j++) 
            BIT[i, j] = 0; 

    for (int j = 1; j <= N; j++) 
    { 
        for (int i = 1; i <= N; i++) 
        { 
            // Creating a 2D-BIT using update function 
            // everytime we/ encounter a value in the 
            // input 2D-array 
            int v1 = getSum(BIT, i, j); 
            int v2 = getSum(BIT, i, j - 1); 
            int v3 = getSum(BIT, i - 1, j - 1); 
            int v4 = getSum(BIT, i - 1, j); 

            // Assigning a value to a particular element 
            // of 2D BIT 
            updateBIT(BIT, i, j, aux[i,j] - 
                    (v1 - v2 - v4 + v3)); 
        } 
    } 
    return; 
} 

// A function to answer the queries 
static void answerQueries(Query []q, int m, int [,]BIT) 
{ 
    for (int i = 0; i < m; i++) 
    { 
        int x1 = q[i].x1 + 1; 
        int y1 = q[i].y1 + 1; 
        int x2 = q[i].x2 + 1; 
        int y2 = q[i].y2 + 1; 

        int ans = getSum(BIT, x2, y2) -
                getSum(BIT, x2, y1 - 1) - 
                getSum(BIT, x1 - 1, y2) +
                getSum(BIT, x1 - 1, y1 - 1); 

        Console.Write("Query({0}, {1}, {2}, {3}) = {4}\n", 
                q[i].x1, q[i].y1, q[i].x2, q[i].y2, ans); 
    } 
    return; 
} 

// Driver Code
public static void Main(String[] args) 
{ 
    int [,]mat = { {1, 2, 3, 4}, 
                    {5, 3, 8, 1}, 
                    {4, 6, 7, 5}, 
                    {2, 4, 8, 9} }; 

    // Create a 2D Binary Indexed Tree 
    int [,]BIT = new int[N + 1,N + 1]; 
    construct2DBIT(mat, BIT); 

    /* Queries of the form - x1, y1, x2, y2 
    For example the query- {1, 1, 3, 2} means the sub-matrix- 
        y 
        /\ 
    3 | 1 2 3 4     Sub-matrix 
    2 | 5 3 8 1     {1,1,3,2} --.     3 8 1 
    1 | 4 6 7 5                                 6 7 5 
    0 | 2 4 8 9 
        | 
    --|------ 0 1 2 3 ---. x 
        | 
    
        Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30 
    */
    Query []q = {new Query(1, 1, 3, 2), 
                new Query(2, 3, 3, 3), 
                new Query(1, 1, 1, 1)}; 
    int m = q.Length; 

    answerQueries(q, m, BIT); 
}
}

// This code is contributed by Rajput-Ji
JavaScript
<script>
/* Javascript program to implement 2D Binary Indexed Tree 
  
2D BIT is basically a BIT where each element is another BIT. 
Updating by adding v on (x, y) means it's effect will be found 
throughout the rectangle [(x, y), (max_x, max_y)], 
and query for (x, y) gives you the result of the rectangle 
[(0, 0), (x, y)], assuming the total rectangle is 
[(0, 0), (max_x, max_y)]. So when you query and update on 
this BIT,you have to be careful about how many times you are 
subtracting a rectangle and adding it. Simple set union formula 
works here. 
  
So if you want to get the result of a specific rectangle 
[(x1, y1), (x2, y2)], the following steps are necessary: 
  
Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) - 
                    getSum(x1-1, y2)+getSum(x1-1, y1-1) 
  
Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed 
in the rectangle with bottom-left corner's co-ordinates 
(x1, y1) and top-right corner's co-ordinates - (x2, y2) 
  
Constraints -> x1<=x2 and y1<=y2 
  
    /\ 
y | 
    |     --------(x2,y2) 
    |     | | 
    |     | | 
    |     | | 
    |     --------- 
    | (x1,y1) 
    | 
    |___________________________ 
(0, 0)             x--> 
  
In this program we have assumed a square matrix. The 
program can be easily extended to a rectangular one. */

let N = 4; // N-.max_x and max_y 

// A structure to hold the queries 
class Query 
{
    constructor(x1,y1,x2,y2)
    {
        this.x1 = x1;
            this.y1 = y1;
            this.x2 = x2;
            this.y2 = y2;
    }
}

// A function to update the 2D BIT 
function updateBIT(BIT,x,y,val)
{
    for (; x <= N; x += (x & -x)) 
    { 
        // This loop update all the 1D BIT inside the 
        // array of 1D BIT = BIT[x] 
        for (; y <= N; y += (y & -y)) 
            BIT[x][y] += val; 
    } 
    return; 
}

// A function to get sum from (0, 0) to (x, y) 
function getSum(BIT,x,y)
{
    let sum = 0; 
  
    for(; x > 0; x -= x&-x) 
    { 
        // This loop sum through all the 1D BIT 
        // inside the array of 1D BIT = BIT[x] 
        for(; y > 0; y -= y&-y) 
        { 
            sum += BIT[x][y]; 
        } 
    } 
    return sum; 
}

// A function to create an auxiliary matrix 
// from the given input matrix 
function constructAux(mat,aux)
{
    // Initialise Auxiliary array to 0 
    for (let i = 0; i <= N; i++) 
        for (let j = 0; j <= N; j++) 
            aux[i][j] = 0; 
  
    // Construct the Auxiliary Matrix 
    for (let j = 1; j <= N; j++) 
        for (let i = 1; i <= N; i++) 
            aux[i][j] = mat[N - j][i - 1]; 
  
    return; 
}

// A function to construct a 2D BIT 
function construct2DBIT(mat,BIT)
{
    // Create an auxiliary matrix 
    let aux = new Array(N + 1);
    for(let i=0;i<(N+1);i++)
    {
        aux[i]=new Array(N+1);
    }
    constructAux(mat, aux); 
  
    // Initialise the BIT to 0 
    for (let i = 1; i <= N; i++) 
        for (let j = 1; j <= N; j++) 
            BIT[i][j] = 0; 
  
    for (let j = 1; j <= N; j++) 
    { 
        for (let i = 1; i <= N; i++) 
        { 
            // Creating a 2D-BIT using update function 
            // everytime we/ encounter a value in the 
            // input 2D-array 
            let v1 = getSum(BIT, i, j); 
            let v2 = getSum(BIT, i, j - 1); 
            let v3 = getSum(BIT, i - 1, j - 1); 
            let v4 = getSum(BIT, i - 1, j); 
  
            // Assigning a value to a particular element 
            // of 2D BIT 
            updateBIT(BIT, i, j, aux[i][j] - 
                     (v1 - v2 - v4 + v3)); 
        } 
    } 
    return; 
}

// A function to answer the queries 
function answerQueries(q,m,BIT)
{
    for (let i = 0; i < m; i++) 
    { 
        let x1 = q[i].x1 + 1; 
        let y1 = q[i].y1 + 1; 
        let x2 = q[i].x2 + 1; 
           let y2 = q[i].y2 + 1; 
  
        let ans = getSum(BIT, x2, y2) -
                  getSum(BIT, x2, y1 - 1) - 
                  getSum(BIT, x1 - 1, y2) +
                  getSum(BIT, x1 - 1, y1 - 1); 
  
        document.write("Query ("+q[i].x1+", " +q[i].y1+", " +q[i].x2+", " +q[i].y2+") = " +ans+"<br>"); 
    } 
    return; 
}

// Driver Code
let mat= [[1, 2, 3, 4], 
                    [5, 3, 8, 1], 
                    [4, 6, 7, 5], 
                    [2, 4, 8, 9]]; 
  
    // Create a 2D Binary Indexed Tree 
    let BIT = new Array(N + 1);
    for(let i=0;i<(N+1);i++)
    {
        BIT[i]=new Array(N+1);
        for(let j=0;j<(N+1);j++)
        {
            BIT[i][j]=0;
        }
    }
    construct2DBIT(mat, BIT); 
  
    /* Queries of the form - x1, y1, x2, y2 
    For example the query- {1, 1, 3, 2} means the sub-matrix- 
        y 
        /\ 
    3 | 1 2 3 4     Sub-matrix 
    2 | 5 3 8 1     {1,1,3,2} --.     3 8 1 
    1 | 4 6 7 5                                 6 7 5 
    0 | 2 4 8 9 
        | 
    --|------ 0 1 2 3 ---. x 
        | 
      
        Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30 
    */
    let q = [new Query(1, 1, 3, 2), 
                 new Query(2, 3, 3, 3), 
                 new Query(1, 1, 1, 1)]; 
    let m = q.length; 
  
    answerQueries(q, m, BIT); 


// This code is contributed by rag2127
</script>
 

Output
Query(1, 1, 3, 2) = 30
Query(2, 3, 3, 3) = 7
Query(1, 1, 1, 1) = 6

Time Complexity: 

  • Both updateBIT(x, y, val) function and getSum(x, y) function takes O(log(N)*log(M)) time.
  • Building the 2D BIT takes O(NM log(N)*log(M)).
  • Since in each of the queries we are calling getSum(x, y) function so answering all the Q queries takes O(Q*log(N)*log(M)) time.
  • Hence the overall time complexity of the program is O((NM+Q)*log(N)*log(M)) where, 
    N = maximum X co-ordinate of the whole matrix. 
    M = maximum Y co-ordinate of the whole matrix. 
    Q = Number of queries.

Auxiliary Space: O(NM) to store the BIT and the auxiliary array


Next Article

Similar Reads