Open In App

Total number of Spanning trees in a Cycle Graph

Last Updated : 23 Dec, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given the number of vertices in a Cycle graph. The task is to find the Total number of Spanning trees possible. 

Note: A cycle/circular graph is a graph that contains only one cycle. A spanning tree is the shortest/minimum path in a graph that covers all the vertices of a graph.

Examples:  

Input: Vertices = 3
Output: Total Spanning tree = 3

Input: Vertices = 4
Output: Total Spanning tree = 4

Example 1: 

For Cycle Graph with vertices = 3 
 


Spanning Tree possible is 3 
 


Example 2: 
For Cycle Graph with vertices = 4 


Spanning Tree possible is 4 


So, the number of spanning trees will always be equal to the number of vertices in a cycle graph.

Implementation:

C++
// C++ program to find number of
// spanning trees
#include <bits/stdc++.h>
using namespace std;

// function that calculates the
// total Spanning tree
int Spanning(int vertices)
{
    int result = 0;

    result = vertices;
    return result;
}

// Driver code
int main()
{
    int vertices = 4;

    cout << "Spanning tree = " << Spanning(vertices);
    return 0;
}
Java
// Java program to find number of 
// spanning trees 

import java.io.*;

class GFG {

// function that calculates the 
// total Spanning tree 
static int Spanning(int vertices) 
{ 
    int result = 0; 

    result = vertices; 
    return result; 
} 

// Driver code 
    public static void main (String[] args) {
    int vertices = 4; 

    System.out.println("Spanning tree = " + Spanning(vertices));
    }
}
// This code is contributed  
// by chandan_jnu..
Python3
# Python program to find number of 
# spanning trees 

# function that calculates the 
# total Spanning tree 
def Spanning( vertices):
        result = 0

    result = vertices 
    return result 

# Driver code 
vertices = 4
print("Spanning tree = ", 
       Spanning(vertices))

# This code is contributed
# by Sanjit_Prasad
C#
// C# program to find number 
// of spanning trees
using System;

// function that calculates 
// the total Spanning tree
class GFG
{
public int Spanning(int vertices)
{
    int result = 0;

    result = vertices;
    return result;
}

// Driver code
public static void Main()
{
    GFG g = new GFG();
    int vertices = 4;

    Console.WriteLine("Spanning tree = {0}",   
                      g.Spanning(vertices));
}
}

// This code is contributed
// by Soumik
PHP
<?php
// PHP program to find number of
// spanning trees

// function that calculates the
// total Spanning tree
function Spanning($vertices)
{
    $result = 0;

    $result = $vertices;
    return $result;
}

// Driver code
$vertices = 4;

echo "Spanning tree = " . 
     Spanning($vertices);
     
// This code is contributed 
// by Ankita Saini
?>
JavaScript
<script>

// Javascript program to find number of
// spanning trees

// Function that calculates the
// total Spanning tree
function Spanning(vertices)
{
    result = 0;
    result = vertices;
    return result;
}

// Driver code
var vertices = 4;
document.write("Spanning tree = " + 
               Spanning(vertices));

// This code is contributed by noob2000

</script>

Output
Spanning tree = 4

Time Complexity: O(1)
Auxiliary Space: O(1)


Next Article

Similar Reads