Top R Libraries for Data Visualization in 2024
Last Updated :
20 Mar, 2024
When you are talking about data analysis, don’t forget data visualization! It is a very important part of data analysis that can reveal hidden trends and provide more insight into the data. Data visualization can provide information just by looking at them whereas it would take much more time to obtain that same information from spreadsheets or text reports. And that is why Data Visualization is so popular. In this article, we will discuss the Top R Libraries for Data Visualization.

Since R is one of the most popular programming languages in data analysis, it’s not a shock that there are many R libraries for data visualization. These libraries are so popular because they allow data analysts to create the visualizations they want from their data easily by conveniently providing both the interface and the tools all in one place! Then the only important thing is knowing what the visualization wants to convey to the users and creating that using all the tools available. What more could a data analyst want?!
Top R Libraries for Data Visualization in 2024
R is a popular programming language among analysts, researchers, and programmers in the Data Science field. The reason for this is a wide ecosystem of libraries that are readily available for use, allowing data to be presented efficiently to diverse stakeholders. So let’s check out some of these Top R Libraries for Data Visualization that are commonly used these days.
1. ggplot2
ggplot2 is an R data visualization library that is based on The Grammar of Graphics. ggplot2 can create data visualizations such as bar charts, pie charts, histograms, scatterplots, error charts, etc. using high-level API. It also allows you to add different types of data visualization components or layers in a single visualization. Once ggplot2 has been told which variables to map to which aesthetics in the plot, it does the rest of the work so that the user can focus on interpreting the visualizations and take less time to create them. But this also means that it is not possible to create highly customized graphics in ggplot2. But there are a lot of resources in the RStudio community and Stack Overflow that can provide help in ggplot2 when needed. Just like dplyr, if you want to install ggplot2, you can install the tidyverse or you can just install ggplot2 using install.packages(“ggplot2”)
2. Plotly
Plotly is a free open-source graphing library that can be used to form data visualizations. Plotly is an R package that is built on top of the Plotly JavaScript library (plotly.js) and can be used to create web-based data visualizations that can be displayed in Jupyter notebooks or web applications using Dash or saved as individual HTML files. Plotly provides more than 40 unique chart types like scatter plots, histograms, line charts, bar charts, pie charts, error bars, box plots, multiple axes, sparklines, dendrograms, 3-D charts, etc. Plotly also provides contour plots, which are not that common in other data visualization libraries. In addition to all this, Plotly can be used offline with no internet connection. You can install Plotly from CRAN using install. packages(‘plotly’) or install the latest development version from GitHub using devtools::install_github(“ropensci/plotly”).
3. Esquisse
Esquisse is a data visualization tool in R that allows you to create detailed data visualizations using the ggplot2 package. You can create all sorts of scatter plots, histograms, line charts, bar charts, pie charts, error bars, box plots, multiple axes, sparklines, dendrograms, 3-D charts, etc. using Esquisse and also export these graphs or access the code for creating these graphs. Esquisse is such a famous and easily used data visualization tool because of its drag-and-drop ability which makes it popular even among beginners. You can install Esquisse from CRAN using install.packages(“esquisse”) or install the development version from GitHub using remotes::install_github(“dreamRs/esquisse”).
4. Lattice
Lattice is a data visualization tool that is primarily used to implement Trellis graphs in R. These Trellis graphs are used to view many complicated and multi-variable data sets at the same time so they can be compared. Since all these different plots end up looking like a Trellis, this is called a Trellis graph. Since Lattice is a high-level data visualization library, it can handle many of the typical graphics without needing many customizations. In case you want to extend the capabilities of Lattice, they can download the LatticeExtra package which is an extended version. You can install Lattice from CRAN using install.packages(“lattice”) or install the development version from GitHub using remotes::install_github(“deepayan/lattice”).
5. RGL
The RGL package in R is created specifically for making 3-D data visualizations and data plots. It has many graphics commands that work in 3 dimensions but is modeled loosely after the classic 2-D graphics in R. RGL is also inspired by the grid package in R but it is incompatible with it. However, seasoned R coders can easily use RGL because of an existing familiarity with the grid. And RGL is very cool! It has a lot of options for 3-D shapes, various lighting effects, creating new shapes, and also animations. You can install RGL from CRAN using install.packages(“rgl”).
6. Dygraphs
The dygraphs package is an R interface to the JavaScript charting library dygraphs that are used to provide various charts for visualizing data sets. This package can be used for creating various interactive visualizations with zooming, and panning options along with default mouse-over labels. dygraphs also provide support for various graph overlays such as point annotations, shaded regions, event lines, etc. You can also plot the xts time series objects automatically. However, all of these features do not come at the expense of speed in dygraph. Rather, it can provide maximal interactivity even with millions of data points in the visualization. You can install RGL from CRAN using install.packages(“dygraphs”).
7. Leaflet
Just like dygraphs, the Leaflet package is an R interface to the JavaScript Leaflet library that is extremely popular. The Leaflet is very useful in creating interactive but lightweight maps that are seen on various websites such as the Washington Post, the New York Times, etc. There are many useful features in this package such as interactive panning and zooming in the charts, the option to combine Polygons, Lines, Popups, etc. to create charts, embed maps in knitr, create maps in Mercator projections that are non-spherical, and so on. The Leaflet package can be used at the R console after installing it from CRAN using the command install.packages(“leaflet”).
Conclusion
All of these R Libraries for Data Visualization are fantastic choices for creating data visualizations. The packages listed above are only a few of the several good solutions for data visualization in R. Each of these libraries has advantages and downsides, and they may or may not be employed in your next data science project, but it is good to know that they and similar libraries exist. Each of these libraries has benefits, and you can select the ideal one based on the type of visualization or data science project you intend to build. Now that you’ve learned about these libraries, use them to create visually appealing and helpful data visualizations.
Must Read:
Similar Reads
Top 10 Libraries for Data Visualization in 2024
Data is becoming the backbone of our current society. Companies can use data to predict their customer reactions, the success of their products and services, and the areas they need to work on. Data can also be used to understand many social and natural phenomena in the world such as social media tr
8 min read
Top 8 Python Libraries for Data Visualization
Data Visualization is an extremely important part of Data Analysis. After all, there is no better way to understand the hidden patterns and layers in the data than seeing them in a visual format! Donât trust me? Well, assume that you analyzed your company data and found out that a particular product
8 min read
Top 10 JavaScript Libraries for Data Visualization [2025]
JavaScript data visualization libraries help developers create interactive charts, graphs, and other visual components that bring data to life. JavaScript data visualization libraries have become the go-to tools for developers. These libraries donât just create charts and graphs; they help tell stor
8 min read
Top 15 R Libraries for Data Science in 2024
When talking about Data Science, it is impossible not to talk about R. Many R libraries contain an extensive array of functions, tools, and methods for managing and analyzing data. Each library has a specific focus, catering to different needs, such as image and text data handling, data manipulation
9 min read
Top 10 Python Libraries for Data Science in 2024
Data Science continues to evolve with new challenges and innovations. In 2025, the role of Python has only grown stronger as it powers data science workflows. It will remain the dominant programming language in the field of data science. Its extensive ecosystem of libraries makes data manipulation,
10 min read
Top 10 Data Visualization Project Ideas in 2025
Nowadays excellent data visualization skills are high in demand in the IT industries. Data visualization refers to the graphical representation of information and data. It is the practice of translating information into a visual context such as a graph or map to make data easier for the human brain
6 min read
Data Visualization using ggvis Package in R
The ggvis is an interactive visualization package in R language that is based on the popular ggplot2 package. It allows you to create interactive plots and graphics that can be explored and manipulated by the user. ggvis supports a wide range of plot types including scatter plots, line charts, bar c
15+ min read
Top 5 Python Libraries For Big Data
Python has become PandasThe development of panda started between 2008 and the very first version was published back in 2012 which became the most popular open-source framework introduced by Wes McKinney. The demand for Pandas has grown enormously over the past few years and even today if collective
4 min read
Why is Data Visualization so Important in Data Science
Would you prefer to view large data tables and then make sense of that data or view a data visualization that represents that data in an easy-to-understand visual format? Well, most of you would prefer data visualization! That is because data visualization is extremely useful in understanding the da
8 min read
Top 15 Python Libraries for Data Analytics [2025 updated]
Python is the language that has gained preference in data analytics due to simplicity, versatility and a very powerful ecosystem of libraries. If you are dealing with large data sets conducting statistical analysis or visualizing insights, it has a very wide range of libraries to facilitate the proc
11 min read