sympy.stats.Moyal() in python Last Updated : 05 Jun, 2020 Summarize Comments Improve Suggest changes Share Like Article Like Report With the help of sympy.stats.Moyal() method, we can get the continuous random variable which represents the moyal distribution. Syntax : sympy.stats.Moyal(name, mu, sigma) Where, mu and sigma are real number. Return : Return the continuous random variable. Example #1 : In this example we can see that by using sympy.stats.Moyal() method, we are able to get the continuous random variable representing moyal distribution by using this method. Python3 1=1 # Import sympy and Moyal from sympy.stats import Moyal, density from sympy import Symbol, pprint z = Symbol("z") mu = Symbol("mu", positive = True) sigma = Symbol("sigma", positive = True) # Using sympy.stats.Moyal() method X = Moyal("x", mu, sigma) gfg = density(X)(z) print(gfg) Output : sqrt(2)*exp(-exp((mu - z)/sigma)/2 - (-mu + z)/(2*sigma))/(2*sqrt(pi)*sigma) Example #2 : Python3 1=1 # Import sympy and Moyal from sympy.stats import Moyal, density, cdf from sympy import Symbol, pprint z = Symbol("z") mu = Symbol("mu", positive = True) sigma = Symbol("sigma", positive = True) # Using sympy.stats.Moyal() method X = Moyal("x", mu, sigma) Z = density(X)(z) gfg = simplify(cdf(X)(z)) print(gfg) Output : 1 - erf(sqrt(2)*exp((mu - z)/(2*sigma))/2) Comment More infoAdvertise with us Next Article sympy.stats.Levy() in python J jitender_1998 Follow Improve Article Tags : Python SymPy Python SymPy-Stats Practice Tags : python Similar Reads sympy.stats.Normal() in python With the help of sympy.stats.Normal() method, we can get the continuous random variable which represents the normal distribution. Syntax : sympy.stats.Normal(name, mean, std) Where, mean and std are real number. Return : Return the continuous random variable. Example #1 : In this example we can see 1 min read sympy.stats.Maxwell() in python With the help of sympy.stats.Maxwell() method, we can get the continuous random variable which represents the maxwell distribution. Syntax : sympy.stats.Maxwell(name, a) Where, a is real number and a > 0. Return : Return the continuous random variable. Example #1 : In this example we can see that 1 min read sympy.stats.Levy() in python With the help of sympy.stats.Levy() method, we can get the continuous random variable which represents the levy distribution. Syntax : sympy.stats.Levy(name, mu, c) Where, mu and c are real number and mu, c > 0. Return : Return the continuous random variable. Example #1 : In this example we can s 1 min read sympy.stats.Pareto() in python With the help of sympy.stats.Pareto() method, we can get the continuous random variable which represents the Pareto distribution. Syntax : sympy.stats.Pareto(name, xm, alpha) Where, xm and alpha are real number and xm, alpha > 0. Return : Return the continuous random variable. Example #1 : In thi 1 min read sympy.stats.Poisson() in Python With the help of sympy.stats.Poisson() method, we can get the random variable representing the poisson distribution. Syntax : sympy.stats.Poisson(name, lambda)Return : Return the random variable. Example #1 :In this example we can see that by using sympy.stats.Poisson() method, we are able to get th 1 min read sympy.stats.Logistic() in python With the help of sympy.stats.Logistic() method, we can get the continuous random variable which represents the logistic distribution. Syntax : sympy.stats.Logistic(name, mu, s) Where, mu and s are real number and mu, s > 0. Return : Return the continuous random variable. Example #1 : In this exam 1 min read Like