Open In App

sympy.stats.ExGaussian() in python

Last Updated : 05 Jun, 2020
Summarize
Comments
Improve
Suggest changes
Share
Like Article
Like
Report
With the help of sympy.stats.ExGaussian() method, we can get the continuous random variable representing the exponentially modified gaussian distribution.
Syntax : sympy.stats.ExGaussian(name, mean, std, rate) Return : Return continuous random variable.
Example #1 : In this example we can see that by using sympy.stats.ExGaussian() method, we are able to get the continuous random variable which represents the Exponentially modified Gaussian distribution by using this method. Python3 1=1
# Import sympy and ExGaussian
from sympy.stats import ExGaussian, density
from sympy import Symbol

mean = Symbol("mean", integer = True, positive = True)
std = Symbol("std", integer = True, positive = True)
rate = Symbol("rate", integer = True, positive = True)
z = Symbol("z")

# Using sympy.stats.ExGaussian() method
X = ExGaussian("x", mean, std, rate)
gfg = density(X)(z)

pprint(gfg)
Output :
/ 2 \ rate*\2*mean + rate*std - 2*z/ ------------------------------- / ___ / 2 \\ 2 |\/ 2 *\mean + rate*std - z/| rate*e *erfc|----------------------------| \ 2*std / ------------------------------------------------------------------------ 2
Example #2 : Python3 1=1
# Import sympy and ExGaussian
from sympy.stats import ExGaussian, density
from sympy import Symbol

mean = 22
std = 21
rate = 7
z = 0.4

# Using sympy.stats.ExGaussian() method
X = ExGaussian("x", mean, std, rate)
gfg = density(X)(z)

pprint(gfg)
Output :
/ ___\ 3.50044639861837e+4758*erfc\74.0142857142857*\/ 2 /

Next Article
Practice Tags :

Similar Reads