sympy.stats.Chi() in Python Last Updated : 08 Jun, 2020 Summarize Comments Improve Suggest changes Share Like Article Like Report With the help of sympy.stats.Chi() method, we can get the continuous random variable which represents the chi distribution. Syntax : sympy.stats.Chi(name, k) Where, k is number of degree of freedom. Return : Return the continuous random variable. Example #1 : In this example we can see that by using sympy.stats.Chi() method, we are able to get the continuous random variable representing the chi distribution by using this method. Python3 1=1 # Import sympy and chi from sympy.stats import Chi, density, E from sympy import Symbol, simplify k = Symbol("k", integer = True) z = Symbol("z") # Using sympy.stats.Chi() method X = Chi("x", k) gfg = density(X)(z) print(gfg) Output : 2**(1 - k/2)*z**(k - 1)*exp(-z**2/2)/gamma(k/2) Example #2 : Python3 1=1 # Import sympy and chi from sympy.stats import Chi, density, E from sympy import Symbol, simplify k = 3 z = 2 # Using sympy.stats.Chi() method X = Chi("x", k) gfg = density(X)(z) print(gfg) Output : 4*sqrt(2)*exp(-2)/sqrt(pi) Comment More infoAdvertise with us Next Article sympy.stats.ChiSquared() in python J jitender_1998 Follow Improve Article Tags : Python SymPy Python SymPy-Stats Practice Tags : python Similar Reads sympy.stats.Cauchy() in Python With the help of sympy.stats.Cauchy() method, we can get the continuous random variable which represents the cauchy distribution. Syntax : sympy.stats.Cauchy(name, x, gamma) Where, x and gamma is a real number and gamma is greater 0. Return : Return the continuous random variable. Example #1 : In th 1 min read sympy.stats.ChiSquared() in python With the help of sympy.stats.ChiSquared() method, we can get the continuous random variable representing the chi-squared distribution. Syntax : sympy.stats.ChiSquared(name, k) Return : Return the continuous random variable. Example #1 : In this example we can see that by using sympy.stats.ChiSquared 1 min read sympy.stats.ChiNoncentral() in Python With the help of sympy.stats.ChiNoncentral() method, we can get the continuous random variable which represents the non-central chi distribution. Syntax : sympy.stats.ChiNoncentral(name, k, l) Where, k and l is number of degree of freedom. Return : Return the continuous random variable. Example #1 : 1 min read sympy.stats.Normal() in python With the help of sympy.stats.Normal() method, we can get the continuous random variable which represents the normal distribution. Syntax : sympy.stats.Normal(name, mean, std) Where, mean and std are real number. Return : Return the continuous random variable. Example #1 : In this example we can see 1 min read sympy.stats.Zeta() in Python With the help of sympy.stats.Zeta() method, we can get the random variable representing the Zeta distribution. Syntax : sympy.stats.Zeta(name, s) Return : Return the random variable. Example #1 : In this example we can see that by using sympy.stats.Zeta() method, we are able to get the Zeta distribu 1 min read sympy.stats.Moyal() in python With the help of sympy.stats.Moyal() method, we can get the continuous random variable which represents the moyal distribution. Syntax : sympy.stats.Moyal(name, mu, sigma) Where, mu and sigma are real number. Return : Return the continuous random variable. Example #1 : In this example we can see tha 1 min read Like